Characteristic polynomial





In linear algebra, the characteristic polynomial of a square matrix is a polynomial which is invariant under matrix similarity and has the eigenvalues as roots. It has the determinant and the trace of the matrix as coefficients. The characteristic polynomial of an endomorphism of vector spaces of finite dimension is the characteristic polynomial of the matrix of the endomorphism over any base; it does not depend on the choice of a basis. The characteristic equation is the equation obtained by equating to zero the characteristic polynomial.


The characteristic polynomial of a graph is the characteristic polynomial of its adjacency matrix. It is a graph invariant, though it is not complete: the smallest pair of non-isomorphic graphs with the same characteristic polynomial have five nodes.[1]




Contents






  • 1 Motivation


  • 2 Formal definition


  • 3 Examples


  • 4 Properties


  • 5 Characteristic polynomial of a product of two matrices


  • 6 Secular function and secular equation


    • 6.1 Secular function


    • 6.2 Secular equation




  • 7 See also


  • 8 References


  • 9 External links





Motivation


Given a square matrix A, we want to find a polynomial whose zeros are the eigenvalues of A. For a diagonal matrix A, the characteristic polynomial is easy to define: if the diagonal entries are a1a2a3, etc. then the characteristic polynomial will be:


(t−a1)(t−a2)(t−a3)⋯.{displaystyle (t-a_{1})(t-a_{2})(t-a_{3})cdots .,}(t-a_1)(t-a_2)(t-a_3)cdots.,

This works because the diagonal entries are also the eigenvalues of this matrix.


For a general matrix A, one can proceed as follows. A scalar λ is an eigenvalue of A if and only if there is an eigenvector v ≠ 0 such that


Av=λv,{displaystyle Amathbf {v} =lambda mathbf {v} ,,}A mathbf{v} = lambda mathbf{v},,

or


I−A)v=0{displaystyle (lambda I-A)mathbf {v} =0,}(lambda I - A)mathbf{v} = 0,

(where I is the identity matrix). Since v is non-zero, this means that the matrix λ I − A is singular (non-invertible), which in turn means that its determinant is 0. Thus the roots of the function det(λ I − A) are the eigenvalues of A, and it is clear that this determinant is a polynomial in λ.



Formal definition


We consider an n×n matrix A. The characteristic polynomial of A, denoted by pA(t), is the polynomial defined by[2]


pA(t)=det(tI−A){displaystyle p_{A}(t)=det left(tI-Aright)}p_A(t) = det left(tI - Aright)

where I denotes the n-by-n identity matrix.


Some authors define the characteristic polynomial to be det(A - t I). That polynomial differs from the one defined here by a sign (−1)n, so it makes no difference for properties like having as roots the eigenvalues of A; however the current definition always gives a monic polynomial, whereas the alternative definition is monic only when n{displaystyle n}n is even.



Examples


Suppose we want to compute the characteristic polynomial of the matrix


A=(21−10).{displaystyle A={begin{pmatrix}2&1\-1&0end{pmatrix}}.}A=begin{pmatrix}<br />
2 & 1\<br />
-1& 0<br />
end{pmatrix}.<br />

We now compute the determinant of


tI−A=(t−2−11t−0){displaystyle tI-A={begin{pmatrix}t-2&-1\1&t-0end{pmatrix}}}t I-A = begin{pmatrix}<br />
t-2&-1\<br />
1&t-0<br />
end{pmatrix}<br />

which is (t−2)t−1(−1)=t2−2t+1,{displaystyle (t-2)t-1(-1)=t^{2}-2t+1,!,}(t-2)t - 1(-1) = t^2-2t+1 ,!, the characteristic polynomial of A.


Another example uses hyperbolic functions of a hyperbolic angle φ.
For the matrix take


A=(cosh⁡)sinh⁡)sinh⁡)cosh⁡)).{displaystyle A={begin{pmatrix}cosh(varphi )&sinh(varphi )\sinh(varphi )&cosh(varphi )end{pmatrix}}.}{displaystyle A={begin{pmatrix}cosh(varphi )&sinh(varphi )\sinh(varphi )&cosh(varphi )end{pmatrix}}.}

Its characteristic polynomial is


det(tI−A)=(t−cosh⁡))2−sinh2⁡)=t2−2t cosh⁡)+1=(t−)(t−e−φ).{displaystyle det(tI-A)=(t-cosh(varphi ))^{2}-sinh ^{2}(varphi )=t^{2}-2t cosh(varphi )+1=(t-e^{varphi })(t-e^{-varphi }).}{displaystyle det(tI-A)=(t-cosh(varphi ))^{2}-sinh ^{2}(varphi )=t^{2}-2t cosh(varphi )+1=(t-e^{varphi })(t-e^{-varphi }).}


Properties


The polynomial pA(t) is monic (its leading coefficient is 1) and its degree is n. The most important fact about the characteristic polynomial was already mentioned in the motivational paragraph: the eigenvalues of A are precisely the roots of pA(t) (this also holds for the minimal polynomial of A, but its degree may be less than n). The coefficients of the characteristic polynomial are all polynomial expressions in the entries of the matrix. In particular its constant coefficient pA (0)  is det(−A) = (−1)n det(A), the coefficient of tn is one, and the coefficient of tn−1 is tr(−A) = −tr(A), where tr(A) is the matrix trace of A. (The signs given here correspond to the formal definition given in the previous section;[3] for the alternative definition these would instead be det(A) and (−1)n − 1 tr(A) respectively.[4])


For a 2×2 matrix A, the characteristic polynomial is thus given by


t2−tr⁡(A)t+det(A).{displaystyle t^{2}-operatorname {tr} (A)t+det(A).}t^{2}-operatorname {tr}(A)t+det(A).

Using the language of exterior algebra, one may compactly express the characteristic polynomial of an n×n matrix A as


pA(t)=∑k=0ntn−k(−1)ktr⁡kA){displaystyle p_{A}(t)=sum _{k=0}^{n}t^{n-k}(-1)^{k}operatorname {tr} (Lambda ^{k}A)} p_A (t) = sum_{k=0}^n t^{n-k} (-1)^k operatorname{tr}(Lambda^k A)

where tr(ΛkA) is the trace of the kthexterior power of A, which has dimension (nk){displaystyle {tbinom {n}{k}}}{tbinom {n}{k}}. This trace may be computed as the sum of all principal minors of A of size k. The recursive Faddeev–LeVerrier algorithm computes these coefficients more efficiently.


When the characteristic is 0 it may alternatively be computed as a single determinant, that of the k×k matrix,


1k!|tr⁡Ak−10⋯tr⁡A2tr⁡Ak−2⋯tr⁡Ak−1tr⁡Ak−2⋯1tr⁡Aktr⁡Ak−1⋯tr⁡A| .{displaystyle {frac {1}{k!}}{begin{vmatrix}operatorname {tr} A&k-1&0&cdots &\operatorname {tr} A^{2}&operatorname {tr} A&k-2&cdots &\vdots &vdots &&ddots &vdots \operatorname {tr} A^{k-1}&operatorname {tr} A^{k-2}&&cdots &1\operatorname {tr} A^{k}&operatorname {tr} A^{k-1}&&cdots &operatorname {tr} Aend{vmatrix}}~.}{frac  {1}{k!}}{begin{vmatrix}operatorname {tr}A&k-1&0&cdots &\operatorname {tr}A^{2}&operatorname {tr}A&k-2&cdots &\vdots &vdots &&ddots &vdots \operatorname {tr}A^{{k-1}}&operatorname {tr}A^{{k-2}}&&cdots &1\operatorname {tr}A^{k}&operatorname {tr}A^{{k-1}}&&cdots &operatorname {tr}Aend{vmatrix}}~.

The Cayley–Hamilton theorem states that replacing t by A in the characteristic polynomial (interpreting the resulting powers as matrix powers, and the constant term c as c times the identity matrix) yields the zero matrix. Informally speaking, every matrix satisfies its own characteristic equation. This statement is equivalent to saying that the minimal polynomial of A divides the characteristic polynomial of A.


Two similar matrices have the same characteristic polynomial. The converse however is not true in general: two matrices with the same characteristic polynomial need not be similar.


The matrix A and its transpose have the same characteristic polynomial. A is similar to a triangular matrix if and only if its characteristic polynomial can be completely factored into linear factors over K (the same is true with the minimal polynomial instead of the characteristic polynomial). In this case A is similar to a matrix in Jordan normal form.



Characteristic polynomial of a product of two matrices


If A and B are two square n×n matrices then characteristic polynomials of AB and BA coincide:


pAB(t)=pBA(t).{displaystyle p_{AB}(t)=p_{BA}(t).,}p_{AB}(t)=p_{BA}(t).,

When A is non-singular this result follows from the fact that AB and BA are similar:


BA=A−1(AB)A.{displaystyle BA=A^{-1}(AB)A.}BA=A^{{-1}}(AB)A.

For the case where both A and B are singular, one may remark that the desired identity is an equality between polynomials in t and the coefficients of the matrices. Thus, to prove this equality, it suffices to prove that it is verified on a non-empty open subset (for the usual topology, or, more generally, for the Zariski topology) of the space of all the coefficients. As the non-singular matrices form such an open subset of the space of all matrices, this proves the result.


More generally, if A is a matrix of order m×n and B is a matrix of order n×m, then AB is m×m and BA is n×n matrix, and one has


pBA(t)=tn−mpAB(t).{displaystyle p_{BA}(t)=t^{n-m}p_{AB}(t).,} p_{BA}(t) = t^{n-m} p_{AB}(t).,

To prove this, one may suppose n > m, by exchanging, if needed, A and B. Then, by bordering A on the bottom by nm rows of zeros, and B on the right, by, nm columns of zeros, one gets two n×n matrices A' and B' such that B'A' = BA, and A'B' is equal to AB bordered by nm rows and columns of zeros. The result follows from the case of square matrices, by comparing the characteristic polynomials of A'B' and AB.



Secular function and secular equation



Secular function


The term secular function has been used for what is now called characteristic polynomial (in some literature the term secular function is still used). The term comes from the fact that the characteristic polynomial was used to calculate secular perturbations (on a time scale of a century, i.e. slow compared to annual motion) of planetary orbits, according to Lagrange's theory of oscillations.



Secular equation


Secular equation may have several meanings.



  • In linear algebra it is sometimes used in place of characteristic equation.

  • In astronomy it is the algebraic or numerical expression of the magnitude of the inequalities in a planet's motion that remain after the inequalities of a short period have been allowed for.[5]


  • In molecular orbital calculations relating to the energy of the electron and its wave function it is also used instead of the characteristic equation.


See also



  • Characteristic equation (disambiguation)

  • Minimal polynomial (linear algebra)

  • Invariants of tensors

  • Companion matrix

  • Faddeev–LeVerrier algorithm

  • Cayley–Hamilton theorem

  • Samuelson–Berkowitz algorithm



References





  1. ^ "Characteristic Polynomial of a Graph – Wolfram MathWorld". Retrieved August 26, 2011..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  2. ^ Steven Roman (1992). Advanced linear algebra (2 ed.). Springer. p. 137. ISBN 3540978372.


  3. ^ Proposition 28 in these lecture notes[permanent dead link]


  4. ^ Theorem 4 in these lecture notes


  5. ^ "secular equation". Retrieved January 21, 2010.




  • T.S. Blyth & E.F. Robertson (1998) Basic Linear Algebra, p 149, Springer
    ISBN 3-540-76122-5 .

  • John B. Fraleigh & Raymond A. Beauregard (1990) Linear Algebra 2nd edition, p 246, Addison-Wesley
    ISBN 0-201-11949-8 .

  • Werner Greub (1974) Linear Algebra 4th edition, pp 120–5, Springer,
    ISBN 0-387-90110-8 .

  • Paul C. Shields (1980) Elementary Linear Algebra 3rd edition, p 274, Worth Publishers
    ISBN 0-87901-121-1 .


  • Gilbert Strang (1988) Linear Algebra and Its Applications 3rd edition, p 246, Brooks/Cole
    ISBN 0-15-551005-3 .



External links


  • R. Skip Garibaldi. The characteristic polynomial and determinant are not ad hoc constructions. https://arxiv.org/abs/math/0203276



Popular posts from this blog

Lambaréné

維納斯堡 (華盛頓州)

Mononymous person