Slurry







A slurry composed of glass beads in silicone oil flowing down an inclined plane





Potato starch slurry


A slurry is a thin and viscous fluid mixture composed of a pulverized solid and a liquid. Slurries flow under gravity, can be pumped if not too thick, and are often used as a convenient way of handling solids in bulk.[1]




Contents






  • 1 Examples


  • 2 Calculations


    • 2.1 Determining solids fraction


    • 2.2 Liquid mass from mass fraction of solids


    • 2.3 Volumetric fraction from mass fraction




  • 3 See also


  • 4 References


  • 5 External links





Examples


Examples of slurries include:



  • Cement slurry, a mixture of cement, water, and assorted dry and liquid additives used in the petroleum and other industries[2][3]

  • Soil/cement slurry, also called Controlled Low-Strength Material (CLSM), flowable fill, controlled density fill, flowable mortar, plastic soil-cement, K-Krete, and other names[4]

  • A mixture of thickening agent, oxidizers, and water used to form a gel explosive[citation needed]

  • A mixture of pyroclastic material, rocky debris, and water produced in a volcanic eruption and known as a lahar

  • A mixture of bentonite and water used to make slurry walls


  • Coal slurry, a mixture of coal waste and water, or crushed coal and water[5]


  • Slurry oil, the highest boiling fraction distilled from the effluent of an FCC unit in a oil refinery. It contains large amount of catalyst, in form of sediments hence the denomination of slurry.

  • A mixture of wood pulp and water used to make paper

  • Manure slurry, a mixture of animal waste, organic matter, and sometimes water often known simply as "slurry" in agricultural use, used as fertilizer after ageing in a slurry pit


  • Meat slurry, a mixture of finely ground meat and water, centrifugally dewatered and used as food

  • An abrasive substance used in chemical-mechanical polishing


  • Slurry ice, a mixture of ice crystals, freezing point depressant, and water

  • A mixture of raw materials and water involved in the rawmill manufacture of Portland cement

  • A mixture of minerals, water, and additives used in the manufacture of ceramics

  • A bolus of chewed food mixed with saliva[6]

  • A mixture of epoxy glue and glass microspheres used as a filler compound around core materials in sandwich-structured composite airframes.



Calculations



Determining solids fraction


To determine the percent solids (or solids fraction) of a slurry from the density of the slurry, solids and liquid[7]


ϕsl=ρs(ρsl−ρl)ρsl(ρs−ρl){displaystyle phi _{sl}={frac {rho _{s}(rho _{sl}-rho _{l})}{rho _{sl}(rho _{s}-rho _{l})}}}phi _{sl}={frac {rho _{s}(rho _{sl}-rho _{l})}{rho _{sl}(rho _{s}-rho _{l})}}

where




ϕsl{displaystyle phi _{sl}}phi _{sl} is the solids fraction of the slurry (state by mass)


ρs{displaystyle rho _{s}}rho _{s} is the solids density


ρsl{displaystyle rho _{sl}}rho _{sl} is the slurry density


ρl{displaystyle rho _{l}}rho _{l} is the liquid density


In aqueous slurries, as is common in mineral processing, the specific gravity of the species is typically used, and since SGwater{displaystyle SG_{water}}SG_{{water}} is taken to be 1, this relation is typically written:


ϕsl=ρs(ρsl−1)ρsl(ρs−1){displaystyle phi _{sl}={frac {rho _{s}(rho _{sl}-1)}{rho _{sl}(rho _{s}-1)}}}phi _{sl}={frac {rho _{s}(rho _{sl}-1)}{rho _{sl}(rho _{s}-1)}}

even though specific gravity with units tonnes/m^3 (t/m^3) is used instead of the SI density unit, kg/m^3.



Liquid mass from mass fraction of solids


To determine the mass of liquid in a sample given the mass of solids and the mass fraction:
By definition


ϕsl=MsMsl{displaystyle phi _{sl}={frac {M_{s}}{M_{sl}}}}phi _{sl}={frac {M_{s}}{M_{sl}}}

therefore


Msl=Msϕsl{displaystyle M_{sl}={frac {M_{s}}{phi _{sl}}}}M_{sl}={frac {M_{s}}{phi _{sl}}}

and


Ms+Ml=Msϕsl{displaystyle M_{s}+M_{l}={frac {M_{s}}{phi _{sl}}}}M_{s}+M_{l}={frac {M_{s}}{phi _{sl}}}

then


Ml=Msϕsl−Ms{displaystyle M_{l}={frac {M_{s}}{phi _{sl}}}-M_{s}}M_{l}={frac {M_{s}}{phi _{sl}}}-M_{s}

and therefore


Ml=1−ϕslϕslMs{displaystyle M_{l}={frac {1-phi _{sl}}{phi _{sl}}}M_{s}}M_{l}={frac {1-phi _{sl}}{phi _{sl}}}M_{s}

where




ϕsl{displaystyle phi _{sl}}phi _{sl} is the solids fraction of the slurry


Ms{displaystyle M_{s}}M_{{s}} is the mass or mass flow of solids in the sample or stream


Msl{displaystyle M_{sl}}M_{{sl}} is the mass or mass flow of slurry in the sample or stream


Ml{displaystyle M_{l}}M_{{l}} is the mass or mass flow of liquid in the sample or stream



Volumetric fraction from mass fraction


ϕsl,m=MsMsl{displaystyle phi _{sl,m}={frac {M_{s}}{M_{sl}}}}phi _{sl,m}={frac {M_{s}}{M_{sl}}}

Equivalently


ϕsl,v=VsVsl{displaystyle phi _{sl,v}={frac {V_{s}}{V_{sl}}}}phi _{sl,v}={frac {V_{s}}{V_{sl}}}

and in a minerals processing context where the specific gravity of the liquid (water) is taken to be one:


ϕsl,v=MsSGsMsSGs+Ml1{displaystyle phi _{sl,v}={frac {frac {M_{s}}{SG_{s}}}{{frac {M_{s}}{SG_{s}}}+{frac {M_{l}}{1}}}}}phi _{sl,v}={frac {frac {M_{s}}{SG_{s}}}{{frac {M_{s}}{SG_{s}}}+{frac {M_{l}}{1}}}}

So


ϕsl,v=MsMs+MlSGs{displaystyle phi _{sl,v}={frac {M_{s}}{M_{s}+M_{l}SG_{s}}}}phi _{sl,v}={frac {M_{s}}{M_{s}+M_{l}SG_{s}}}

and


ϕsl,v=11+MlSGsMs{displaystyle phi _{sl,v}={frac {1}{1+{frac {M_{l}SG_{s}}{M_{s}}}}}}phi _{sl,v}={frac {1}{1+{frac {M_{l}SG_{s}}{M_{s}}}}}

Then combining with the first equation:


ϕsl,v=11+MlSGsϕsl,mMsMsMs+Ml{displaystyle phi _{sl,v}={frac {1}{1+{frac {M_{l}SG_{s}}{phi _{sl,m}M_{s}}}{frac {M_{s}}{M_{s}+M_{l}}}}}}phi _{sl,v}={frac {1}{1+{frac {M_{l}SG_{s}}{phi _{sl,m}M_{s}}}{frac {M_{s}}{M_{s}+M_{l}}}}}

So


ϕsl,v=11+SGsϕsl,mMlMs+Ml{displaystyle phi _{sl,v}={frac {1}{1+{frac {SG_{s}}{phi _{sl,m}}}{frac {M_{l}}{M_{s}+M_{l}}}}}}phi _{sl,v}={frac {1}{1+{frac {SG_{s}}{phi _{sl,m}}}{frac {M_{l}}{M_{s}+M_{l}}}}}

Then since


ϕsl,m=MsMs+Ml=1−MlMs+Ml{displaystyle phi _{sl,m}={frac {M_{s}}{M_{s}+M_{l}}}=1-{frac {M_{l}}{M_{s}+M_{l}}}}phi _{sl,m}={frac {M_{s}}{M_{s}+M_{l}}}=1-{frac {M_{l}}{M_{s}+M_{l}}}

we conclude that


ϕsl,v=11+SGs(1ϕsl,m−1){displaystyle phi _{sl,v}={frac {1}{1+SG_{s}({frac {1}{phi _{sl,m}}}-1)}}}phi _{sl,v}={frac {1}{1+SG_{s}({frac {1}{phi _{sl,m}}}-1)}}

where




ϕsl,v{displaystyle phi _{sl,v}}phi _{sl,v} is the solids fraction of the slurry on a volumetric basis


ϕsl,m{displaystyle phi _{sl,m}}phi _{sl,m} is the solids fraction of the slurry on a mass basis


Ms{displaystyle M_{s}}M_{{s}} is the mass or mass flow of solids in the sample or stream


Msl{displaystyle M_{sl}}M_{{sl}} is the mass or mass flow of slurry in the sample or stream


Ml{displaystyle M_{l}}M_{{l}} is the mass or mass flow of liquid in the sample or stream komi


SGs{displaystyle SG_{s}}SG_{{s}} is the bulk specific gravity of the solids



See also







  • Grout

  • Slurry pipeline

  • Slurry transport



References





  1. ^ Oxford English Dictionary 2nd ed.: Slurry


  2. ^ Shlumberger: Oilfield glossary


  3. ^ Rheonova : Measuring rheological propertis of settling slurries


  4. ^ Portland Cement Association: Controlled Low-Strength Material


  5. ^ Red Valve Company: Coal Slurry Pipeline


  6. ^ Rheonova : Measuring food bolus properties Archived 2013-11-30 at Archive.today


  7. ^ Wills, B.A. and Napier-Munn, T.J, Wills' Mineral Processing Technology: an introduction to the practical aspects of ore treatment and mineral recovery, .mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}
    ISBN 978-0-7506-4450-1
    , Seventh Edition (2006), Elsevier, Great Britain





External links







  • Bonapace, A.C. A General Theory of the Hydraulic Transport of Solids in Full Suspension

  • Ravelet, F., Bakir, F., Khelladi, S., Rey, R. (2012). Experimental study of hydraulic transport of large particles in horizontal pipes. Experimental thermal and fluid science.

  • Ming, G., Ruixiang, L., Fusheng, N., Liqun, X. (2007). Hydraulic Transport of Coarse Gravel—A Laboratory Investigation Into Flow Resistance.








Popular posts from this blog

Lambaréné

維納斯堡 (華盛頓州)

Mononymous person