3000 (number)
| ||||
---|---|---|---|---|
List of numbers — Integers ← 0 1k 2k 3k 4k 5k 6k 7k 8k 9k → | ||||
Cardinal | three thousand | |||
Ordinal | 3000th (three thousandth) | |||
Factorization | 23× 3 × 53 | |||
Greek numeral | ,Γ´ | |||
Roman numeral | MMM | |||
Unicode symbol(s) | MMM, mmm | |||
Binary | 1011101110002 | |||
Ternary | 110100103 | |||
Quaternary | 2323204 | |||
Quinary | 440005 | |||
Senary | 215206 | |||
Octal | 56708 | |||
Duodecimal | 18A012 | |||
Hexadecimal | BB816 | |||
Vigesimal | 7A020 | |||
Base 36 | 2BC36 |
3000 (three thousand) is the natural number following 2999 and preceding 3001. It is the smallest number requiring thirteen letters in English (when "and" is required from 101 forward).
Contents
1 Selected numbers in the range 3001–3999
1.1 3001 to 3099
1.2 3100 to 3199
1.3 3200 to 3299
1.4 3300 to 3399
1.5 3400 to 3499
1.6 3500 to 3599
1.7 3600 to 3699
1.8 3700 to 3799
1.9 3800 to 3899
1.10 3900 to 3999
2 References
Selected numbers in the range 3001–3999
3001 to 3099
3001 – super-prime
3003 – triangular number, only number known to appear eight times in Pascal's triangle; no number is known to appear more than eight times other than 1. (see Singmaster's conjecture)
3019 – super-prime, happy number
3023 – 84th Sophie Germain prime, 51st safe prime
3025 – 552, sum of the cubes of the first ten integers, centered octagonal number,[1]dodecagonal number[2]
3037 – star number, cousin prime with 3041
3045 – sum of the integers 196 to 210 and sum of the integers 211 to 224
3046 – centered heptagonal number[3]
3052 – decagonal number[4]
3059 – centered cube number[5]
3061 – prime of the form 2p-1
3063 – perfect totient number[6]
3067 - super-prime, prime number mentioned in a question during a quiz in Little Man Tate, where it was asked what its factors were, and the response was that it has none, since it is indeed Prime.
3071 – Thabit number
3075 – nonagonal number[7]
3078 – 18th pentagonal pyramidal number[8]
3080 – pronic number
3081 – triangular number, 497th sphenic number
3087 – sum of first 40 primes
3100 to 3199
3109 – super-prime
3119 – safe prime
3121 – centered square number,[9]emirp
3125 – 55
3136 – 562, palindromic in base 3 (110220113), tribonacci number[10]
3137 – Proth prime,[11] both a left- and right- truncatable prime
3149 – highly cototient number[12]
3155 – member of the Mian–Chowla sequence[13]
3160 – triangular number
3167 – safe prime
3169 – super-prime, Cuban prime of the form x = y + 1[14]
3192 – pronic number
3200 to 3299
3203 – safe prime
3229 – super-prime
3240 – triangular number
3248 – member of a Ruth-Aaron pair with 3249 under second definition, largest number whose factorial is less than 1010000 – hence its factorial is the largest certain advanced computer programs can handle.
3249 – 572, palindromic in base 7 (123217), centered octagonal number,[1] member of a Ruth–Aaron pair with 3248 under second definition
3253 – sum of eleven consecutive primes (269 + 271 + 277 + 281 + 283 + 293 + 307 + 311 + 313 + 317 + 331)
3256 – centered heptagonal number[3]
3259 – super-prime, completes the ninth prime quadruplet set
3266 – sum of first 41 primes, 523rd sphenic number
3276 – tetrahedral number[15]
3277 – 5th super-Poulet number,[16] decagonal number[4]
3281 – octahedral number,[17] centered square number[9]
3286 – nonagonal number[7]
3299 – 85th Sophie Germain prime, super-prime
3300 to 3399
3306 – pronic number
3307 – balanced prime[18]
3313 – balanced prime, star number[18]
3319 – super-prime, happy number
3321 – triangular number
3329 – 86th Sophie Germain prime, Proth prime,[11] member of the Padovan sequence[19]
3354 – member of the Mian–Chowla sequence[13]
3358 – sum of the squares of the first eleven primes
3359 – 87th Sophie Germain prime, highly cototient number[12]
3364 – 582
3375 – 153, palindromic in base 14 (133114), 15th cube
3389 – 88th Sophie Germain prime
3400 to 3499
3403 – triangular number
3407 – super-prime
3413 – 89th Sophie Germain prime, sum of the first 5 nn: 3413 = 11 + 22 + 33 + 44 + 55
3422 – pronic number, 553rd sphenic number, melting point of tungsten in degrees Celsius
3435 – a perfect digit-to-digit invariant, equal to the sum of its digits to their own powers (33 + 44 + 33 + 55 = 3435)
3439 – magic constant of n×n normal magic square and n-queens problem for n = 19.
3445 – centered square number[9]
3447 – sum of first 42 primes
3449 – 90th Sophie Germain prime
3457 – Proth prime[11]
3463 – Happy number
3467 – safe prime
3469 – super-prime, Cuban prime of the form x = y + 2, completes the tenth prime quadruplet set[20]
3473 – centered heptagonal number[3]
3481 – 592, centered octagonal number[1]
3486 – triangular number
3491 – 91st Sophie Germain prime
3500 to 3599
3504 – nonagonal number[7]
3510 – decagonal number[4]
3511 – largest known Wieferich prime
3517 – super-prime, sum of nine consecutive primes (367 + 373 + 379 + 383 + 389 + 397 + 401 + 409 + 419)
3539 – 92nd Sophie Germain prime
3540 – pronic number
3559 – super-prime
3569 – highly cototient number[12]
3570 – triangular number
3571 – 500th prime, Cuban prime of the form x = y + 1,[14] 17th Lucas number,[21] 4th balanced prime of order 4.[22]
3591 – member of the Mian–Chowla sequence[13]
3593 – 93rd Sophie Germain prime, super-prime
3600 to 3699
3600 – 602, number of seconds in an hour, called šār or šāru in the sexagesimal system of Ancient Mesopotamia (cf. Saros), 1201-gonal number
3601 – star number
3610 – 19th pentagonal pyramidal number[8]
3613 – centered square number[9]
3617 – sum of eleven consecutive primes (293 + 307 + 311 + 313 + 317 + 331 + 337 + 347 + 349 + 353 + 359)
3623 – 94th Sophie Germain prime, safe prime
3637 – balanced prime, super-prime[18]
3638 – sum of first 43 primes, 599th sphenic number
3643 – Happy number, sum of seven consecutive primes (499 + 503 + 509 + 521 + 523 + 541 + 547)
3654 – tetrahedral number[15]
3655 – triangular number, 601st sphenic number
3660 – pronic number
3684 – 13th Keith number[23]
3697 – centered heptagonal number[3]
3700 to 3799
3721 – 612, centered octagonal number[1]
3729 – nonagonal number[7]
3733 – balanced prime, super-prime[18]
3741 – triangular number, 618th sphenic number
3751 – decagonal number[4]
3761 – 95th Sophie Germain prime, super-prime
3779 – 96th Sophie Germain prime, safe prime
3782 – pronic number, 623rd sphenic number
3785 – centered square number[9]
3797 – member of the Mian–Chowla sequence,[13] both a left- and right- truncatable prime
3800 to 3899
3803 – 97th Sophie Germain prime, safe prime
3821 – 98th Sophie Germain prime
3828 – triangular number
3831 – sum of first 44 primes
3844 – 622
3851 – 99th Sophie Germain prime
3863 – 100th Sophie Germain prime
3865 – greater of third pair of Smith brothers
3888 – longest number when expressed in Roman numerals I, V, X, L, C, D, and M (MMMDCCCLXXXVIII)
3889 – Cuban prime of the form x = y + 2[20]
3894 – octahedral number[17]
3900 to 3999
3901 – star number
3906 – pronic number
3911 – 101st Sophie Germain prime, super-prime
3916 – triangular number
3925 – centered cube number[5]
3926 – 12th open meandric number, 654th sphenic number
3928 – centered heptagonal number[3]
3940 – there are 3940 distinct ways to arrange the 12 flat pentacubes (or 3-D pentominoes) into a 3x4x5 box (not counting rotations and reflections)
3943 – super-prime
3947 – safe prime
3961 – nonagonal number,[7] centered square number[9]
3967 – Carol number[24]
3969 – 632, centered octagonal number[1]
3989 – highly cototient number[12]
3998 – member of the Mian–Chowla sequence[13]
3999 – largest number properly expressible using Roman numerals I, V, X, L, C, D, and M (MMMCMXCIX), ignoring vinculum
References
^ abcde "Sloane's A016754 : Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}
^ "Sloane's A051624 : 12-gonal (or dodecagonal) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
^ abcde "Sloane's A069099 : Centered heptagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
^ abcd "Sloane's A001107 : 10-gonal (or decagonal) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
^ ab "Sloane's A005898 : Centered cube numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
^ "Sloane's A082897 : Perfect totient numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
^ abcde "Sloane's A001106 : 9-gonal (or enneagonal or nonagonal) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
^ ab "Sloane's A002411 : Pentagonal pyramidal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
^ abcdef "Sloane's A001844 : Centered square numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
^ "Sloane's A000073 : Tribonacci numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
^ abc "Sloane's A080076 : Proth primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
^ abcd "Sloane's A100827 : Highly cototient numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
^ abcde "Sloane's A005282 : Mian-Chowla sequence". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
^ ab "Sloane's A002407 : Cuban primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
^ ab "Sloane's A000292 : Tetrahedral numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
^ "Sloane's A050217 : Super-Poulet numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
^ ab "Sloane's A005900 : Octahedral numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
^ abcd "Sloane's A006562 : Balanced primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
^ "Sloane's A000931 : Padovan sequence". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
^ ab "Sloane's A002648 : A variant of the cuban primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
^ "Sloane's A000032 : Lucas numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
^ "Sloane's A082079 : Balanced primes of order four". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
^ "Sloane's A007629 : Repfigit (REPetitive FIbonacci-like diGIT) numbers (or Keith numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
^ "Sloane's A093112 : a(n) = (2^n-1)^2 - 2". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.