body.skin-minerva .mw-parser-output table.infobox caption{text-align:center}
钆 64Gd
.mw-parser-output .Yuansuzhouqibiao_alkali{background-color:#ff6666}.mw-parser-output .Yuansuzhouqibiao_alkali_predicted{background-color:#ffa1a1}.mw-parser-output .Yuansuzhouqibiao_alkali_earth{background-color:#ffdead}.mw-parser-output .Yuansuzhouqibiao_alkali_earth_predicted{background-color:#ffecd3}.mw-parser-output .Yuansuzhouqibiao_lanthanide{background-color:#ffbfff}.mw-parser-output .Yuansuzhouqibiao_actinide{background-color:#ff99cc}.mw-parser-output .Yuansuzhouqibiao_superactinides{background-color:#b5c8ff}.mw-parser-output .Yuansuzhouqibiao_superactinides_predicted{background-color:#d1ddff}.mw-parser-output .Yuansuzhouqibiao_eka_superactinide{background-color:#a0e032}.mw-parser-output .Yuansuzhouqibiao_eka_superactinide_predicted{background-color:#c6dd9d}.mw-parser-output .Yuansuzhouqibiao_transition{background-color:#ffc0c0}.mw-parser-output .Yuansuzhouqibiao_transition_predicted{background-color:#ffe2e2}.mw-parser-output .Yuansuzhouqibiao_post_transition{background-color:#cccccc}.mw-parser-output .Yuansuzhouqibiao_post_transition_predicted{background-color:#dfdfdf}.mw-parser-output .Yuansuzhouqibiao_metalloid{background-color:#cccc99}.mw-parser-output .Yuansuzhouqibiao_metalloid_predicted{background-color:#e2e2aa}.mw-parser-output .Yuansuzhouqibiao_diatomic{background-color:#e7ff8f}.mw-parser-output .Yuansuzhouqibiao_diatomic_predicted{background-color:#F3FFC7}.mw-parser-output .Yuansuzhouqibiao_polyatomic{background-color:#a1ffc3}.mw-parser-output .Yuansuzhouqibiao_polyatomic_predicted{background-color:#d0ffe1}.mw-parser-output .Yuansuzhouqibiao_reactive_nonmetal{background-color:#a0ffa0}.mw-parser-output .Yuansuzhouqibiao_reactive_nonmetal_predicted{background-color:#d3ffd3}.mw-parser-output .Yuansuzhouqibiao_halogen{background-color:#ffff99}.mw-parser-output .Yuansuzhouqibiao_halogen_predicted{background-color:#ffffd6}.mw-parser-output .Yuansuzhouqibiao_noble_gas{background-color:#c0ffff}.mw-parser-output .Yuansuzhouqibiao_noble_gas_predicted{background-color:#ddffff}.mw-parser-output .Yuansuzhouqibiao_supercritical_atom{background-color:#f4f4c6}.mw-parser-output .Yuansuzhouqibiao_supercritical_atom_predicted{background-color:#f4f4c6}.mw-parser-output .Yuansuzhouqibiao_no_electron{background-color:#d0d0d0}.mw-parser-output .Yuansuzhouqibiao_s_block{background-color:#ff6699}.mw-parser-output .Yuansuzhouqibiao_s_block_predicted{background-color:#FBD}.mw-parser-output .Yuansuzhouqibiao_p_block{background-color:#99ccff}.mw-parser-output .Yuansuzhouqibiao_p_block_predicted{background-color:#CEF}.mw-parser-output .Yuansuzhouqibiao_d_block{background-color:#ccff99}.mw-parser-output .Yuansuzhouqibiao_d_block_predicted{background-color:#DFC}.mw-parser-output .Yuansuzhouqibiao_ds_block{background-color:#90ffb0}.mw-parser-output .Yuansuzhouqibiao_ds_block_predicted{background-color:#C7FFD7}.mw-parser-output .Yuansuzhouqibiao_f_block{background-color:#66ffcc}.mw-parser-output .Yuansuzhouqibiao_f_block_predicted{background-color:#BFE}.mw-parser-output .Yuansuzhouqibiao_g_block{background-color:#ffcc66}.mw-parser-output .Yuansuzhouqibiao_g_block_predicted{background-color:#FDA}.mw-parser-output .Yuansuzhouqibiao_h_block{background-color:#F0908C}.mw-parser-output .Yuansuzhouqibiao_h_block_predicted{background-color:#F0B6B4}.mw-parser-output .Yuansuzhouqibiao_unknown{background-color:#e8e8e8}.mw-parser-output .Yuansuzhouqibiao_error_type{background-color:#000000}.mw-parser-output .Yuansuzhouqibiao_null{background-color:inherit}.mw-parser-output .Yuansuzhouqibiao_maybe_not_exist{background-color:white}.mw-parser-output .Yuansuzhouqibiao_none_type{background-color:#c0c0c0}.mw-parser-output .Yuansuzhouqibiao_gas{color:green}.mw-parser-output .Yuansuzhouqibiao_liquid{color:blue}.mw-parser-output .Yuansuzhouqibiao_solid{color:black;font-weight:bold}.mw-parser-output .Yuansuzhouqibiao_unknow_phase{color:grey}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
– ↑ 钆 ↓ 锔
|
铕 ← 钆 → 铽
|
|
|
外觀 |
---|
银白色
|
概況 |
---|
名稱·符號·序數
|
钆(gadolinium)·Gd·64 |
---|
元素類別 |
镧系元素
|
---|
族·週期·區
|
不適用 ·6·f
|
---|
標準原子質量 |
157.25(3) |
---|
電子排布 |
[Xe] 4f7 5d1 6s2 2, 8, 18, 25, 9, 2
|
---|
歷史 |
---|
發現 |
让-夏尔·加利萨·德马里尼亚(1880年) |
---|
分離 |
保罗·埃米尔·勒科克·德布瓦博德兰(1886年) |
---|
物理性質 |
---|
物態 |
固体
|
---|
密度 |
(接近室温) 7.90 g·cm−3
|
---|
熔點時液體密度 |
7.4 g·cm−3
|
---|
熔點 |
1585 K,1312 °C,2394 °F
|
---|
沸點 |
3273 K,3000 °C,5432 °F
|
---|
熔化熱 |
10.05 kJ·mol−1
|
---|
汽化熱 |
301.3 kJ·mol−1
|
---|
比熱容 |
37.03 J·mol−1·K−1
|
---|
蒸氣壓((calculated))
壓/Pa
|
1
|
10
|
100
|
1 k
|
10 k
|
100 k
|
溫/K
|
1836
|
2028
|
2267
|
2573
|
2976
|
3535
|
|
原子性質 |
---|
氧化態 |
1, 2, 3 ((a mildly basic oxide)) |
---|
電負性 |
1.20(鲍林标度) |
---|
電離能 |
第一:593.4 kJ·mol−1
第二:1170 kJ·mol−1
第三:1990 kJ·mol−1
|
---|
原子半徑 |
180 pm
|
---|
共價半徑 |
196±6 pm |
---|
雜項 |
---|
晶體結構 |
六方密堆积
|
---|
磁序 |
铁磁性-顺磁性,transition at 293.4 K |
---|
電阻率 |
α, poly: 1.310 µΩ·m
|
---|
熱導率 |
10.6 W·m−1·K−1
|
---|
膨脹係數 |
α poly: 9.4 µm/(m·K) |
---|
聲速(細棒) |
(20 °C)2680 m·s−1
|
---|
楊氏模量 |
α form: 54.8 GPa |
---|
剪切模量 |
α form: 21.8 GPa |
---|
體積模量 |
α form: 37.9 GPa |
---|
泊松比 |
α form: 0.259 |
---|
維氏硬度 |
510–950 MPa |
---|
CAS號 |
7440-54-2 |
---|
最穩定同位素 |
---|
主条目:钆的同位素
同位素
|
丰度
|
半衰期 (t1/2)
|
衰變
|
---|
方式
|
能量(MeV)
|
產物
|
---|
152Gd
|
0.20%
|
1.08×1014 y
|
α
|
2.205
|
148Sm
|
154Gd
|
2.18%
|
穩定,帶90個中子
|
155Gd
|
14.80%
|
穩定,帶91個中子
|
156Gd
|
20.47%
|
穩定,帶92個中子
|
157Gd
|
15.65%
|
穩定,帶93個中子
|
158Gd
|
24.84%
|
穩定,帶94個中子
|
160Gd
|
21.86%
|
>1.3×1021 y
|
β−β−
|
1.729
|
160Dy
|
|
釓(拼音:gá,注音:ㄍㄚˊ,粤拼:gá,舊譯錷)符号Gd,元素之一,原子序64,属于镧系元素,也是稀土元素之一[1]。钆具有铁磁性,居里點約在室溫(19℃,66℉),即將一塊釓放入冰水中冷卻會吸附磁鐵,但回溫後釓會脫離磁鐵掉落。
钆在干燥的空气中,比其它稀土元素稳定。钆会与水有缓和的反应,并会溶於稀酸中。
性质
化学性质
参见:Category:钆化合物
钆可以和大多数的元素直接化合,形成Gd(III)的化合物。如加热或高温时可以和氮气、硫、磷、硒、碳、硅或砷反应,形成二元化合物。[2]
和其它稀土元素不同的是,金属钆在干燥空气中是相对稳定的。但它可以在潮湿空气迅速失去光泽,形成一层易脱落的氧化钆薄膜。当其脱落时,氧化向内部进行。
- 4 Gd + 3 O2 → 2 Gd2O3
钆是一种强还原剂,可以将一些金属氧化物还原至金属形态。钆电正性强,可以和冷水缓慢反应、和热水迅速反应,生成氢氧化钆:
- 2 Gd + 6 H2O → 2 Gd(OH)3 + 3 H2
钆能够迅速地和稀硫酸反应,生成无色的[Gd(H2O)9]3+水合离子:[3]
- 2 Gd + 3 H2SO4 + 18 H2O → 2 [Gd(H2O)9]3+ + 3 SO2−
4 + 3 H2
钆和卤素在约200 °C反应,生成三卤化钆:
- 2 Gd + 3 X2 → 2 GdX3
化合物
在钆的大多数化合物中,其氧化态为+3。所有三卤化钆都是已知的,它们都是白色固体(三碘化钆例外,为黄色)。常见的钆盐除了三氯化钆之外,还有硫酸钆和硝酸钆,它们可由相应的稀酸溶解金属或其氧化物得到。
Gd3+正如其它镧系元素离子一样,可以形成配合物,并有着高配位数。例如在络合剂DOTA的存在下,形成八齿配位的化合物。含[Gd(DOTA)]−的盐在核磁共振成像中有着应用。一系列类似的齿合化合物也被研发出来了,例如叫“Gadodiamide”的化合物。
低价态的钆化合物也是已知的,特别是在固态中。卤化钆(II)可由三卤化钆和钆金属在钽制容器中加热得到。Gd2Cl3和GdCl可以在更高温度(800 °C)还原得到。一氯化钆是有着类似层状石墨结构的片状固体。[4]
用途
釓化合物具有高度的順磁性(paramagnetic),可作核磁共振成像的顯影劑。釓對磁共振造影機的磁場有強烈反應,以钆喷酸二甲葡胺藥劑形式注入血管中磁共振造影會清楚顯示血液流向,精確定位內出血的位置,並由3D視覺影像觀察血液自血管何處滲出,或觀察血液何處變窄或停止,確定血管阻塞或閉鎖的部位。[5]
安全性
参考文献
^ 无机化学(第二版)下册.高等教育出版社.庞锡涛 主编.1-2 镧系元素的存在、制备、性质及用途. P446. ISBN 978-7-04-005387-6
^ Holleman, A. F.; Wiberg, E. (2001), Inorganic Chemistry, San Diego: Academic Press, ISBN 0-12-352651-5
^ Chemical reactions of Gadolinium. Webelements. [2009-06-06].
^ Cotton. Advanced inorganic chemistry 6th. Wiley-India. 2007: 1128. ISBN 81-265-1338-1.
^ 看得到的化學,Theodore Gray著,大是文化 ISBN 978-986652667-1
元素周期表(镧系元素)
|
---|
|
IA 1
|
IIA 2
|
|
IIIB 3
|
IVB 4
|
VB 5
|
VIB 6
|
VIIB 7
|
VIIIB 8
|
VIIIB 9
|
VIIIB 10
|
IB 11
|
IIB 12
|
IIIA 13
|
IVA 14
|
VA 15
|
VIA 16
|
VIIA 17
|
VIIIA 18
|
1
|
H
|
|
He
|
2
|
Li
|
Be
|
|
B
|
C
|
N
|
O
|
F
|
Ne
|
3
|
Na
|
Mg
|
|
Al
|
Si
|
P
|
S
|
Cl
|
Ar
|
4
|
K
|
Ca
|
|
Sc
|
Ti
|
V
|
Cr
|
Mn
|
Fe
|
Co
|
Ni
|
Cu
|
Zn
|
Ga
|
Ge
|
As
|
Se
|
Br
|
Kr
|
5
|
Rb
|
Sr
|
|
|
Y
|
Zr
|
Nb
|
Mo
|
Tc
|
Ru
|
Rh
|
Pd
|
Ag
|
Cd
|
In
|
Sn
|
Sb
|
Te
|
I
|
Xe
|
6
|
Cs
|
Ba
|
La
|
Ce
|
Pr
|
Nd
|
Pm
|
Sm
|
Eu
|
Gd
|
Tb
|
Dy
|
Ho
|
Er
|
Tm
|
Yb
|
Lu
|
Hf
|
Ta
|
W
|
Re
|
Os
|
Ir
|
Pt
|
Au
|
Hg
|
Tl
|
Pb
|
Bi
|
Po
|
At
|
Rn
|
7
|
Fr
|
Ra
|
Ac
|
Th
|
Pa
|
U
|
Np
|
Pu
|
Am
|
Cm
|
Bk
|
Cf
|
Es
|
Fm
|
Md
|
No
|
Lr
|
Rf
|
Db
|
Sg
|
Bh
|
Hs
|
Mt
|
Ds
|
Rg
|
Cn
|
Nh
|
Fl
|
Mc
|
Lv
|
Ts
|
Og
|
相關項目 |
化學元素 · 擴展元素週期表 · 同位素列表 · 地球的地殼元素豐度列表 · 元素列表
|
---|
|
规范控制 |
- GND: 4155786-4
- LCCN: sh85052688
|
---|
|