Formula for primes




In number theory, a formula for primes is a formula generating the prime numbers, exactly and without exception. No such formula which is efficiently computable is known. A number of constraints are known, showing what such a "formula" can and cannot be.




Contents






  • 1 Formula based on Wilson's theorem


  • 2 Formula based on a system of Diophantine equations


  • 3 Mills' formula


  • 4 Wright's formula


  • 5 A function that represents all primes


  • 6 Prime formulas and polynomial functions


  • 7 Possible formula using a recurrence relation


  • 8 See also


  • 9 References


  • 10 Further reading


  • 11 External links





Formula based on Wilson's theorem


A simple formula is



f(n)=⌊n!mod(n+1)n⌋(n−1)+2,{displaystyle f(n)=leftlfloor {frac {n!{bmod {(}}n+1)}{n}}rightrfloor (n-1)+2,}{displaystyle f(n)=leftlfloor {frac {n!{bmod {(}}n+1)}{n}}rightrfloor (n-1)+2,} for positive integer n{displaystyle n}n.

By Wilson's theorem, n+1{displaystyle n+1}n+1 is prime if and only if n!mod(n+1)=n{displaystyle n!{bmod {(}}n+1)=n}{displaystyle n!{bmod {(}}n+1)=n}. Thus, when n+1{displaystyle n+1}n+1 is prime, the first factor in the product becomes one, and the formula produces the prime number n+1{displaystyle n+1}n+1. But when n+1{displaystyle n+1}n+1 is not prime, the first factor becomes zero and the formula produces the prime number 2.[1]
This formula is not an efficient way to generate prime numbers because evaluating n!mod(n+1){displaystyle n!{bmod {(}}n+1)}{displaystyle n!{bmod {(}}n+1)} requires about n−1{displaystyle n-1}n-1 multiplications and reductions mod(n+1){displaystyle {bmod {(}}n+1)}{displaystyle {bmod {(}}n+1)}.



Formula based on a system of Diophantine equations


Because the set of primes is a computably enumerable set, by Matiyasevich's theorem, it can be obtained from a system of Diophantine equations. Jones et al. (1976) found an explicit set of 14 Diophantine equations in 26 variables, such that a given number k + 2 is prime if and only if that system has a solution in natural numbers:[2]


α0=wz+h+j−q=0{displaystyle alpha _{0}=wz+h+j-q=0}alpha _{0}=wz+h+j-q=0

α1=(gk+2g+k+1)(h+j)+h−z=0{displaystyle alpha _{1}=(gk+2g+k+1)(h+j)+h-z=0}alpha _{1}=(gk+2g+k+1)(h+j)+h-z=0

α2=16(k+1)3(k+2)(n+1)2+1−f2=0{displaystyle alpha _{2}=16(k+1)^{3}(k+2)(n+1)^{2}+1-f^{2}=0}alpha _{2}=16(k+1)^{3}(k+2)(n+1)^{2}+1-f^{2}=0

α3=2n+p+q+z−e=0{displaystyle alpha _{3}=2n+p+q+z-e=0}alpha _{3}=2n+p+q+z-e=0

α4=e3(e+2)(a+1)2+1−o2=0{displaystyle alpha _{4}=e^{3}(e+2)(a+1)^{2}+1-o^{2}=0}alpha _{4}=e^{3}(e+2)(a+1)^{2}+1-o^{2}=0

α5=(a2−1)y2+1−x2=0{displaystyle alpha _{5}=(a^{2}-1)y^{2}+1-x^{2}=0}alpha _{5}=(a^{2}-1)y^{2}+1-x^{2}=0

α6=16r2y4(a2−1)+1−u2=0{displaystyle alpha _{6}=16r^{2}y^{4}(a^{2}-1)+1-u^{2}=0}alpha _{6}=16r^{2}y^{4}(a^{2}-1)+1-u^{2}=0

α7=n+ℓ+v−y=0{displaystyle alpha _{7}=n+ell +v-y=0}{displaystyle alpha _{7}=n+ell +v-y=0}

α8=(a2−1)ℓ2+1−m2=0{displaystyle alpha _{8}=(a^{2}-1)ell ^{2}+1-m^{2}=0}{displaystyle alpha _{8}=(a^{2}-1)ell ^{2}+1-m^{2}=0}

α9=ai+k+1−i=0{displaystyle alpha _{9}=ai+k+1-ell -i=0}{displaystyle alpha _{9}=ai+k+1-ell -i=0}

α10=((a+u2(u2−a))2−1)(n+4dy)2+1−(x+cu)2=0{displaystyle alpha _{10}=((a+u^{2}(u^{2}-a))^{2}-1)(n+4dy)^{2}+1-(x+cu)^{2}=0}alpha _{{10}}=((a+u^{2}(u^{2}-a))^{2}-1)(n+4dy)^{2}+1-(x+cu)^{2}=0

α11=p+ℓ(a−n−1)+b(2an+2a−n2−2n−2)−m=0{displaystyle alpha _{11}=p+ell (a-n-1)+b(2an+2a-n^{2}-2n-2)-m=0}{displaystyle alpha _{11}=p+ell (a-n-1)+b(2an+2a-n^{2}-2n-2)-m=0}

α12=q+y(a−p−1)+s(2ap+2a−p2−2p−2)−x=0{displaystyle alpha _{12}=q+y(a-p-1)+s(2ap+2a-p^{2}-2p-2)-x=0}alpha _{{12}}=q+y(a-p-1)+s(2ap+2a-p^{2}-2p-2)-x=0

α13=z+pℓ(a−p)+t(2ap−p2−1)−pm=0{displaystyle alpha _{13}=z+pell (a-p)+t(2ap-p^{2}-1)-pm=0}{displaystyle alpha _{13}=z+pell (a-p)+t(2ap-p^{2}-1)-pm=0}

The 14 equations α0, …, α13 can be used to produce a prime-generating polynomial inequality in 26 variables:


(k+2)(1−α02−α12−α132)>0{displaystyle (k+2)(1-alpha _{0}^{2}-alpha _{1}^{2}-cdots -alpha _{13}^{2})>0} (k+2)(1-alpha_0^2-alpha_1^2-cdots-alpha_{13}^2) > 0

i.e.:


(k+2)(1−[wz+h+j−q]2−[(gk+2g+k+1)(h+j)+h−z]2−[16(k+1)3(k+2)(n+1)2+1−f2]2−[2n+p+q+z−e]2−[e3(e+2)(a+1)2+1−o2]2−[(a2−1)y2+1−x2]2−[16r2y4(a2−1)+1−u2]2−[n+ℓ+v−y]2−[(a2−1)ℓ2+1−m2]2−[ai+k+1−i]2−[((a+u2(u2−a))2−1)(n+4dy)2+1−(x+cu)2]2−[p+ℓ(a−n−1)+b(2an+2a−n2−2n−2)−m]2−[q+y(a−p−1)+s(2ap+2a−p2−2p−2)−x]2−[z+pℓ(a−p)+t(2ap−p2−1)−pm]2)>0{displaystyle {begin{aligned}&(k+2)(1-{}\[6pt]&[wz+h+j-q]^{2}-{}\[6pt]&[(gk+2g+k+1)(h+j)+h-z]^{2}-{}\[6pt]&[16(k+1)^{3}(k+2)(n+1)^{2}+1-f^{2}]^{2}-{}\[6pt]&[2n+p+q+z-e]^{2}-{}\[6pt]&[e^{3}(e+2)(a+1)^{2}+1-o^{2}]^{2}-{}\[6pt]&[(a^{2}-1)y^{2}+1-x^{2}]^{2}-{}\[6pt]&[16r^{2}y^{4}(a^{2}-1)+1-u^{2}]^{2}-{}\[6pt]&[n+ell +v-y]^{2}-{}\[6pt]&[(a^{2}-1)ell ^{2}+1-m^{2}]^{2}-{}\[6pt]&[ai+k+1-ell -i]^{2}-{}\[6pt]&[((a+u^{2}(u^{2}-a))^{2}-1)(n+4dy)^{2}+1-(x+cu)^{2}]^{2}-{}\[6pt]&[p+ell (a-n-1)+b(2an+2a-n^{2}-2n-2)-m]^{2}-{}\[6pt]&[q+y(a-p-1)+s(2ap+2a-p^{2}-2p-2)-x]^{2}-{}\[6pt]&[z+pell (a-p)+t(2ap-p^{2}-1)-pm]^{2})\[6pt]&>0end{aligned}}}{displaystyle {begin{aligned}&(k+2)(1-{}\[6pt]&[wz+h+j-q]^{2}-{}\[6pt]&[(gk+2g+k+1)(h+j)+h-z]^{2}-{}\[6pt]&[16(k+1)^{3}(k+2)(n+1)^{2}+1-f^{2}]^{2}-{}\[6pt]&[2n+p+q+z-e]^{2}-{}\[6pt]&[e^{3}(e+2)(a+1)^{2}+1-o^{2}]^{2}-{}\[6pt]&[(a^{2}-1)y^{2}+1-x^{2}]^{2}-{}\[6pt]&[16r^{2}y^{4}(a^{2}-1)+1-u^{2}]^{2}-{}\[6pt]&[n+ell +v-y]^{2}-{}\[6pt]&[(a^{2}-1)ell ^{2}+1-m^{2}]^{2}-{}\[6pt]&[ai+k+1-ell -i]^{2}-{}\[6pt]&[((a+u^{2}(u^{2}-a))^{2}-1)(n+4dy)^{2}+1-(x+cu)^{2}]^{2}-{}\[6pt]&[p+ell (a-n-1)+b(2an+2a-n^{2}-2n-2)-m]^{2}-{}\[6pt]&[q+y(a-p-1)+s(2ap+2a-p^{2}-2p-2)-x]^{2}-{}\[6pt]&[z+pell (a-p)+t(2ap-p^{2}-1)-pm]^{2})\[6pt]&>0end{aligned}}}

is a polynomial inequality in 26 variables, and the set of prime numbers is identical to the set of positive values taken on by the left-hand side as the variables a, b, …, z range over the nonnegative integers.


A general theorem of Matiyasevich says that if a set is defined by a system of Diophantine equations, it can also be defined by a system of Diophantine equations in only 9 variables.[3] Hence, there is a prime-generating polynomial as above with only 10 variables. However, its degree is large (in the order of 1045). On the other hand, there also exists such a set of equations of degree only 4, but in 58 variables.[4]



Mills' formula


The first such formula known was established by W. H. Mills (1947), who proved that there exists a real number A such that, if


dn=A3n{displaystyle d_{n}=A^{3^{n}}}{displaystyle d_{n}=A^{3^{n}}}

then


⌊dn⌋=⌊A3n⌋{displaystyle leftlfloor d_{n}rightrfloor =leftlfloor A^{3^{n}}rightrfloor }{displaystyle leftlfloor d_{n}rightrfloor =leftlfloor A^{3^{n}}rightrfloor }

is a prime number for all positive integers n.[5] If the Riemann hypothesis is true, then the smallest such A has a value of around 1.3063778838630806904686144926... (sequence A051021 in the OEIS) and is known as Mills' constant. This value gives rise to the primes ⌊d1⌋=2{displaystyle leftlfloor d_{1}rightrfloor =2}{displaystyle leftlfloor d_{1}rightrfloor =2}, ⌊d2⌋=11{displaystyle leftlfloor d_{2}rightrfloor =11}{displaystyle leftlfloor d_{2}rightrfloor =11}, ⌊d3⌋=1361{displaystyle leftlfloor d_{3}rightrfloor =1361}{displaystyle leftlfloor d_{3}rightrfloor =1361}, ... (sequence A051254 in the OEIS) Very little is known about the constant A (not even whether it is rational). This formula has no practical value, because there is no known way of calculating the constant without finding primes in the first place.



Wright's formula


Another prime-generating formula similar to Mills' comes from a theorem of E. M. Wright. He proved that there exists a real number α such that, if




g0=α{displaystyle g_{0}=alpha }{displaystyle g_{0}=alpha } and


gn+1=2gn{displaystyle g_{n+1}=2^{g_{n}}}{displaystyle g_{n+1}=2^{g_{n}}} for n≥0{displaystyle ngeq 0}ngeq 0,


then


⌊gn⌋=⌊2…22α⌋{displaystyle leftlfloor g_{n}rightrfloor =leftlfloor 2^{dots ^{2^{2^{alpha }}}}rightrfloor }{displaystyle leftlfloor g_{n}rightrfloor =leftlfloor 2^{dots ^{2^{2^{alpha }}}}rightrfloor }

is prime for all n≥1{displaystyle ngeq 1}ngeq 1.[6]
Wright gives the first seven decimal places of such a constant: α=1.9287800{displaystyle alpha =1.9287800}{displaystyle alpha =1.9287800}. This value gives rise to the primes ⌊g1⌋=⌊2α⌋=3{displaystyle leftlfloor g_{1}rightrfloor =leftlfloor 2^{alpha }rightrfloor =3}{displaystyle leftlfloor g_{1}rightrfloor =leftlfloor 2^{alpha }rightrfloor =3}, ⌊g2⌋=13{displaystyle leftlfloor g_{2}rightrfloor =13}{displaystyle leftlfloor g_{2}rightrfloor =13}, and ⌊g3⌋=16381{displaystyle leftlfloor g_{3}rightrfloor =16381}{displaystyle leftlfloor g_{3}rightrfloor =16381}. ⌊g4⌋{displaystyle leftlfloor g_{4}rightrfloor }{displaystyle leftlfloor g_{4}rightrfloor } is even, and so is not prime. However, with α=1.9287800+8.2843⋅10−4933{displaystyle alpha =1.9287800+8.2843cdot 10^{-4933}}{displaystyle alpha =1.9287800+8.2843cdot 10^{-4933}}, ⌊g1⌋{displaystyle leftlfloor g_{1}rightrfloor }{displaystyle leftlfloor g_{1}rightrfloor }, ⌊g2⌋{displaystyle leftlfloor g_{2}rightrfloor }{displaystyle leftlfloor g_{2}rightrfloor }, and ⌊g3⌋{displaystyle leftlfloor g_{3}rightrfloor }{displaystyle leftlfloor g_{3}rightrfloor } are unchanged, while ⌊g4⌋{displaystyle leftlfloor g_{4}rightrfloor }{displaystyle leftlfloor g_{4}rightrfloor } is a prime with 4932 digits.[7] This sequence of primes cannot be extended beyond ⌊g4⌋{displaystyle leftlfloor g_{4}rightrfloor }{displaystyle leftlfloor g_{4}rightrfloor } without knowing more digits of α. Like Mills' formula, and for the same reasons, Wright's formula cannot be used to find primes.



A function that represents all primes


Given the constant f1=2.920050977316...{displaystyle f_{1}=2.920050977316...}{displaystyle f_{1}=2.920050977316...},
for n≥2{displaystyle ngeq 2}ngeq 2, define the sequence








fn=⌊fn−1⌋(fn−1−⌊fn−1⌋+1){displaystyle f_{n}=leftlfloor f_{n-1}rightrfloor (f_{n-1}-leftlfloor f_{n-1}rightrfloor +1)}{displaystyle f_{n}=leftlfloor f_{n-1}rightrfloor (f_{n-1}-leftlfloor f_{n-1}rightrfloor +1)}












 



 



 



 





(1)




where ⌊⋅⌋{displaystyle leftlfloor cdot rightrfloor }{displaystyle leftlfloor cdot rightrfloor } is the floor function.
Then for n≥1{displaystyle ngeq 1}ngeq 1, ⌊fn⌋{displaystyle leftlfloor f_{n}rightrfloor }{displaystyle leftlfloor f_{n}rightrfloor } equals the nth{displaystyle n^{th}}n^{th} prime:
⌊f1⌋=2{displaystyle leftlfloor f_{1}rightrfloor =2}{displaystyle leftlfloor f_{1}rightrfloor =2},
⌊f2⌋=3{displaystyle leftlfloor f_{2}rightrfloor =3}{displaystyle leftlfloor f_{2}rightrfloor =3},
⌊f3⌋=5{displaystyle leftlfloor f_{3}rightrfloor =5}{displaystyle leftlfloor f_{3}rightrfloor =5}, etc.
[8]
The initial constant f1=2.920050977316{displaystyle f_{1}=2.920050977316}{displaystyle f_{1}=2.920050977316} given in the article is precise enough for equation (1) to generate the primes through 37, the 12th{displaystyle 12^{th}}{displaystyle 12^{th}} prime.


The exact value of f1{displaystyle f_{1}}f_{1} that generates all primes is given by the rapidly-converging series



f1=∑n=1∞pn−1Pn=2−11+3−12+5−12⋅3+7−12⋅3⋅5⋯{displaystyle f_{1}=sum _{n=1}^{infty }{frac {p_{n}-1}{P_{n}}}={frac {2-1}{1}}+{frac {3-1}{2}}+{frac {5-1}{2cdot 3}}+{frac {7-1}{2cdot 3cdot 5}}cdots }{displaystyle f_{1}=sum _{n=1}^{infty }{frac {p_{n}-1}{P_{n}}}={frac {2-1}{1}}+{frac {3-1}{2}}+{frac {5-1}{2cdot 3}}+{frac {7-1}{2cdot 3cdot 5}}cdots },

where pn{displaystyle p_{n}}p_{n} is the nth{displaystyle n^{th}}n^{th} prime, and
Pn{displaystyle P_{n}}P_{n} is the product of all primes less than pn{displaystyle p_{n}}p_{n}.
The more digits of f1{displaystyle f_{1}}f_{1} that we know, the more primes equation (1) will generate.
For example, we can use 25 terms in the series, using the 25 primes less than 100, to calculate the following more precise approximation:
f1≃2.920050977316134712092562917112019{displaystyle f_{1}simeq 2.920050977316134712092562917112019}{displaystyle f_{1}simeq 2.920050977316134712092562917112019}.
This has enough digits for equation (1) to generate all of the primes less than 100.


As with Mills' formula and Wright's formula above, in order to generate a longer list of primes, we need to start by knowing more digits of the initial constant, f1{displaystyle f_{1}}f_{1}.



Prime formulas and polynomial functions


It is known that no non-constant polynomial function P(n) with integer coefficients exists that evaluates to a prime number for all integers n. The proof is as follows: suppose such a polynomial existed. Then P(1) would evaluate to a prime p, so P(1)≡0(modp){displaystyle P(1)equiv 0{pmod {p}}}P(1) equiv 0 pmod p. But for any integer k, P(1+kp)≡0(modp){displaystyle P(1+kp)equiv 0{pmod {p}}}P(1+kp) equiv 0 pmod p also, so P(1+kp){displaystyle P(1+kp)}P(1+kp) cannot also be prime (as it would be divisible by p) unless it were p itself. But the only way P(1+kp)=P(1)=p{displaystyle P(1+kp)=P(1)=p}{displaystyle P(1+kp)=P(1)=p} for all k is if the polynomial function is constant.
The same reasoning shows an even stronger result: no non-constant polynomial function P(n) exists that evaluates to a prime number for almost all integers n.


Euler first noticed (in 1772) that the quadratic polynomial


P(n)=n2+n+41{displaystyle P(n)=n^{2}+n+41}{displaystyle P(n)=n^{2}+n+41}

is prime for the 40 integers n = 0, 1, 2, ..., 39. The primes for n = 0, 1, 2, ..., 39 are 41, 43, 47, 53, 61, 71, ..., 1601. The differences between the terms are 2, 4, 6, 8, 10... For n = 40, it produces a square number, 1681, which is equal to 41×41, the smallest composite number for this formula for n ≥ 0. If 41 divides n, it divides P(n) too. Furthermore, since P(n) can be written as n(n + 1) + 41, if 41 divides n + 1 instead, it also divides P(n). The phenomenon is related to the Ulam spiral, which is also implicitly quadratic, and the class number; this polynomial is related to the Heegner number 163=4⋅41−1{displaystyle 163=4cdot 41-1}163=4cdot 41-1. There are analogous polynomials for p=2,3,5,11 and 17{displaystyle p=2,3,5,11{text{ and }}17}{displaystyle p=2,3,5,11{text{ and }}17} (the lucky numbers of Euler), corresponding to other Heegner numbers.


Given a positive integer S, there may be infinitely many c such that the expression n2 + n + c is always coprime to S. Integer c may be negative, in which case there is a delay before primes are produced.


It is known, based on Dirichlet's theorem on arithmetic progressions, that linear polynomial functions L(n)=an+b{displaystyle L(n)=an+b}L(n) = an + b produce infinitely many primes as long as a and b are relatively prime (though no such function will assume prime values for all values of n). Moreover, the Green–Tao theorem says that for any k there exists a pair of a and b, with the property that L(n)=an+b{displaystyle L(n)=an+b}L(n) = an+b is prime for any n from 0 through k − 1. However, the best known result of such type is for k = 26:


43142746595714191+5283234035979900n{displaystyle 43142746595714191+5283234035979900n}{displaystyle 43142746595714191+5283234035979900n}

is prime for all n from 0 through 25.[9] It is not even known whether there exists a univariate polynomial of degree at least 2, that assumes an infinite number of values that are prime; see Bunyakovsky conjecture.



Possible formula using a recurrence relation


Another prime generator is defined by the recurrence relation


an=an−1+gcd⁡(n,an−1),a1=7,{displaystyle a_{n}=a_{n-1}+operatorname {gcd} (n,a_{n-1}),quad a_{1}=7,} a_n = a_{n-1} + operatorname{gcd}(n,a_{n-1}), quad a_1 = 7,

where gcd(x, y) denotes the greatest common divisor of x and y. The sequence of differences an+1an starts with 1, 1, 1, 5, 3, 1, 1, 1, 1, 11, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 23, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 47, 3, 1, 5, 3, ... (sequence A132199 in the OEIS). Rowland (2008) proved that this sequence contains only ones and prime numbers. However, it does not contain all the prime numbers, since the terms gcd(n+1, an) are always odd and so never equal to 2. 587 is the smallest prime not appearing in the first 10,000 outcomes that are different from 1. Nevertheless, in the same paper it was conjectured to contain all (odd) primes, even though it is rather inefficient.[10]


Note that there is a trivial program that enumerates all and only the prime numbers, as well as more efficient ones, so such recurrence relations are more a matter of curiosity than of any practical use.



See also


  • Prime number theorem


References





  1. ^ Mackinnon, Nick (June 1987), "Prime Number Formulae", The Mathematical Gazette, 71 (456): 113, doi:10.2307/3616496.mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}.


  2. ^ Jones, James P.; Sato, Daihachiro; Wada, Hideo; Wiens, Douglas (1976), "Diophantine representation of the set of prime numbers", American Mathematical Monthly, Mathematical Association of America, 83 (6): 449–464, doi:10.2307/2318339, JSTOR 2318339, archived from the original on 2012-02-24.


  3. ^ Matiyasevich, Yuri V. (1999), "Formulas for Prime Numbers", in Tabachnikov, Serge, Kvant Selecta: Algebra and Analysis, II, American Mathematical Society, pp. 13–24, ISBN 978-0-8218-1915-9.


  4. ^ Jones, James P. (1982), "Universal diophantine equation", Journal of Symbolic Logic, 47 (3): 549–571, doi:10.2307/2273588.


  5. ^ Mills, W. H. (1947), "A prime-representing function" (PDF), Bulletin of the American Mathematical Society, 53 (6): 604, doi:10.1090/S0002-9904-1947-08849-2.


  6. ^ E. M. Wright (1951). "A prime-representing function". American Mathematical Monthly. 58 (9): 616–618. doi:10.2307/2306356. JSTOR 2306356.


  7. ^ Baillie, Robert (5 June 2017). "Wright's Fourth Prime". arXiv:1705.09741v3 [math.NT].


  8. ^ Fridman, Dylan; Garbulsky, Juli; Glecer, Bruno; Grime, James; Tron Florentin, Massi (2019). "A Prime-Representing Constant". American Mathematical Monthly. Washington, DC: Mathematical Association of America. 126 (1): 70–73. doi:10.1080/00029890.2018.1530554.


  9. ^ Perichon, Benoãt (2010), A World Record AP26 (Arithmetic Progression of 26 primes) (PDF), The AP26 is listed in "Jens Kruse Andersen's Primes in Arithmetic Progression Records page", retrieved 2014-06-25.


  10. ^ Rowland, Eric S. (2008), "A Natural Prime-Generating Recurrence", Journal of Integer Sequences, 11: 08.2.8, arXiv:0710.3217, Bibcode:2008JIntS..11...28R.




Further reading




  • Regimbal, Stephen (1975), "An explicit Formula for the k-th prime number", Mathematics Magazine, Mathematical Association of America, 48 (4): 230–232, doi:10.2307/2690354, JSTOR 2690354.

  • A Venugopalan. Formula for primes, twinprimes, number of primes and number of twinprimes. Proceedings of the Indian Academy of Sciences—Mathematical Sciences, Vol. 92, No 1, September 1983, pp. 49–52. Page 49, 50, 51, 52, errata.



External links


  • Eric W. Weisstein, Prime Formulas (Prime-Generating Polynomial) at MathWorld.








Popular posts from this blog

Lambaréné

Chris Pine

Kashihara Line