Concave polygon

Multi tool use

An example of a concave polygon.
A simple polygon that is not convex is called concave,[1]non-convex[2] or reentrant.[3] A concave polygon will always have at least one reflex interior angle—that is, an angle with a measure that is between 180 degrees and 360 degrees exclusive.[4]
Some lines containing interior points of a concave polygon intersect its boundary at more than two points.[4] Some diagonals of a concave polygon lie partly or wholly outside the polygon.[4] Some sidelines of a concave polygon fail to divide the plane into two half-planes one of which entirely contains the polygon. None of these three statements holds for a convex polygon.
As with any simple polygon, the sum of the internal angles of a concave polygon is π (n − 2) radians, equivalently 180°×(n − 2), where n is the number of sides.
It is always possible to partition a concave polygon into a set of convex polygons. A polynomial-time algorithm for finding a decomposition into as few convex polygons as possible is described by Chazelle & Dobkin (1985).[5]
A triangle can never be concave, but there exist concave polygons with n sides for any n > 3. An example of a concave quadrilateral is the dart.
At least one interior angle does not contain all other vertices in its edges and interior.
The convex hull of the concave polygon's vertices, and that of its edges, contains points that are exterior to the polygon.
Notes
^ McConnell, Jeffrey J. (2006), Computer Graphics: Theory Into Practice, p. 130, ISBN 0-7637-2250-2.mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}.
^ Leff, Lawrence (2008), Let's Review: Geometry, Hauppauge, NY: Barron's Educational Series, p. 66, ISBN 978-0-7641-4069-3
^ Mason, J.I. (1946), "On the angles of a polygon", The Mathematical Gazette, The Mathematical Association, 30 (291): 237–238, JSTOR 3611229.
^ abc "Definition and properties of concave polygons with interactive animation".
^ Chazelle, Bernard; Dobkin, David P. (1985), "Optimal convex decompositions", in Toussaint, G.T., Computational Geometry (PDF), Elsevier, pp. 63–133.
Polygons (List)
|
1–10 sides |
- Monogon
- Digon
Triangle
- Equilateral
- Isosceles
- Right
- Acute/Obtuse
Quadrilateral
- Square
- Rectangle
- Rhombus
- Parallelogram
- Trapezoid
- Isosceles trapezoid
- Kite
- Pentagon
- Hexagon
- Heptagon
- Octagon
- Nonagon (Enneagon)
- Decagon
|
11–20 sides |
- Hendecagon
- Dodecagon
- Tridecagon
- Tetradecagon
- Pentadecagon
- Hexadecagon
- Heptadecagon
- Octadecagon
- Enneadecagon
- Icosagon
|
21–100 sides (selected) |
- Icosidigon (22)
- Icositetragon (24)
- Icosihexagon (26)
- Icosioctagon (28)
- Triacontagon (30)
- Triacontadigon (32)
- Triacontatetragon (34)
- Tetracontagon (40)
- Tetracontadigon (42)
- Tetracontaoctagon (48)
- Pentacontagon (50)
- Hexacontagon (60)
- Hexacontatetragon (64)
- Heptacontagon (70)
- Octacontagon (80)
- Enneacontagon (90)
- Enneacontahexagon (96)
- Hectogon (100)
|
>100 sides |
- 120-gon
- 257-gon
- 360-gon
- Chiliagon (1000)
- Myriagon (10000)
- 65537-gon
- Megagon (1000000)
- Apeirogon (∞)
|
Star polygons (5–12 sides) |
- Pentagram
- Hexagram
- Heptagram
- Octagram
- Enneagram
- Decagram
- Hendecagram
- Dodecagram
|
Others |
- Pseudogon
- Skew polygon
- Skew apeirogon
|
Classes |
- Concave
- Convex
- Cyclic
- Equiangular
- Equilateral
- Isogonal
- Isotoxal
- Regular
- Simple
- Tangential
|
External links
- Weisstein, Eric W. "Concave polygon". MathWorld.
aTAXeUxWv9GXe0dco c U3n7KQMStoVleOPXmxYGmjotX
Popular posts from this blog
Place in Moyen-Ogooué, Gabon Lambaréné Street in Lambaréné Lambaréné Location in Gabon Coordinates: 0°41′18″S 10°13′55″E / 0.68833°S 10.23194°E / -0.68833; 10.23194 Coordinates: 0°41′18″S 10°13′55″E / 0.68833°S 10.23194°E / -0.68833; 10.23194 Country Gabon Province Moyen-Ogooué Population (2013 census) • Total 38,775 Lambaréné is a town and the capital of Moyen-Ogooué in Gabon. With a population of 38,775 as of 2013, it is located 75 kilometres south of the equator. Lambaréné is based in the Central African Rainforest at the river Ogooué. This river divides the city into 3 districts: Rive Gauche, Ile Lambaréné and Rive Droite. The Albert Schweitzer Hospital and the districts Adouma and Abongo are located on Rive Droite. The districts Atongowanga, Sahoty, Dakar, Grand Village, Château, Lalala and Bordamur build the Ile Lambaréné. The majority of the people in Lambaréné live in the district Isaac located on Rive Gauche. This distr...
This article is about the number. For the year, see 800. For other uses, see 800 (disambiguation). Natural number ← 799 800 801 → List of numbers — Integers ← 0 100 200 300 400 500 600 700 800 900 → Cardinal eight hundred Ordinal 800th (eight hundredth) Factorization 2 5 × 5 2 Greek numeral Ω´ Roman numeral DCCC Binary 1100100000 2 Ternary 1002122 3 Quaternary 30200 4 Quinary 11200 5 Senary 3412 6 Octal 1440 8 Duodecimal 568 12 Hexadecimal 320 16 Vigesimal 200 20 Base 36 M8 36 800 ( eight hundred ) is the natural number following 799 and preceding 801. It is the sum of four consecutive primes (193 + 197 + 199 + 211). It is a Harshad number. Contents 1 Integers from 801 to 899 1.1 800s 1.2 810s 1.3 820s 1.4 830s 1.5 840s 1.6 850s 1.7 860s 1.8 870s 1.9 880s 1.10 890s 2 References Integers from 801 to 899 800s Main article: 801...
body.skin-minerva .mw-parser-output table.infobox caption{text-align:center} 維納斯堡 Venersborg (英文) CDP Venersborg, Washington 維納斯堡位置圖 坐标: 45°46′58″N 122°27′43″W / 45.7828°N 122.462°W / 45.7828; -122.462 國家 美國 州 華盛頓州 郡 克拉克县 面积 • 总计 27.8 平方公里(10.7 平方英里) • 陸地 27.8 平方公里(10.7 平方英里) • 水域 0.0 平方公里(0.0 平方英里) 海拔 155 米(509 英尺) 人口 (2000年) • 總計 3,274 • 密度 118.0/平方公里(305.6/平方英里) 时区 PST (UTC-8) • 夏时制 PDT(UTC-7) FIPS碼 53-74585 [1] GNIS編號 1527695 [2] 維納斯堡 ( 英语: Venersborg )是美国华盛顿州克拉克县的一個普查规定居民点(CDP),2000年美國人口普查時人口為2,085人。 最初為瑞典人聚居地。 參見 維納什堡 参考資料 ^ American FactFinder. United States Census Bureau. [ 2008-01-31 ] . ^ US Board on Geographic Names. United States Geological Survey. 2007-10-25 [ 2008-01-31 ] . 查 论 编 克拉克县 行政區劃 郡治 : 溫哥華 市 巴特爾格朗德 | 卡默斯 | 拉申特 | 里奇菲尔德 | 溫哥華 | 瓦休戈 | 林地市‡ 鎮 亞科爾特 CDP 安波伊 | 巴伯頓 | 布拉什普雷里 | 櫻桃樹叢區 | ...