Pentagrammic antiprism





















































Uniform Pentagrammic antiprism

Pentagrammic antiprism.png
Type
Prismatic uniform polyhedron
Elements
F = 12, E = 20
V = 10 (χ = 2)
Faces by sides 10{3}+2{5/2}
Schläfli symbol sr{2,5/2}
Wythoff symbol | 2 2 5/2
Coxeter diagram
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node h.png
Symmetry
D5h, [5,2], (*552), order 20
Rotation group D5, [5,2]+, (55), order 10
Index references
U79(a)
Dual
Pentagrammic trapezohedron
Properties
nonconvex

Pentagrammic antiprism vertfig.png
Vertex figure
3.3.3.5/2

In geometry, the pentagrammic antiprism is one in an infinite set of nonconvex antiprisms formed by triangle sides and two regular star polygon caps, in this case two pentagrams.


This polyhedron is identified with the indexed name U79 as a uniform polyhedron.


Pentagram antiprism.png
An alternative representation with hollow centers to the pentagrams.



Net


Net (fold the dotted line in the centre in the opposite direction to all the other lines):
Pentagrammic antiprism flat.png



See also



  • Prismatic uniform polyhedron

  • Pentagrammic prism

  • Pentagrammic crossed-antiprism



External links



  • Weisstein, Eric W. "Pentagrammic antiprism". MathWorld..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}

  • http://www.mathconsult.ch/showroom/unipoly/04.html

  • https://web.archive.org/web/20050313233653/http://www.math.technion.ac.il/~rl/kaleido/data/04.html








Popular posts from this blog

Lambaréné

維納斯堡 (華盛頓州)

Mononymous person