Snub dodecadodecahedron











































Snub dodecadodecahedron

Snub dodecadodecahedron.png
Type
Uniform star polyhedron
Elements
F = 84, E = 150
V = 60 (χ = −6)
Faces by sides 60{3}+12{5}+12{5/2}
Wythoff symbol |2 5/2 5
Symmetry group I, [5,3]+, 532
Index references
U40, C49, W111
Dual polyhedron
Medial pentagonal hexecontahedron
Vertex figure
Snub dodecadodecahedron vertfig.png
3.3.5/2.3.5
Bowers acronym Siddid

In geometry, the snub dodecadodecahedron is a nonconvex uniform polyhedron, indexed as U40. It is given a Schläfli symbol sr{5/2,5}, as a snub great dodecahedron.




Contents






  • 1 Cartesian coordinates


  • 2 Related polyhedra


    • 2.1 Medial pentagonal hexecontahedron




  • 3 See also


  • 4 References


  • 5 External links





Cartesian coordinates


Cartesian coordinates for the vertices of a snub dodecadodecahedron are all the even permutations of



(±2α, ±2, ±2β),

(±(α+β/τ+τ), ±(-ατ+β+1/τ), ±(α/τ+βτ-1)),

(±(-α/τ+βτ+1), ±(-α+β/τ-τ), ±(ατ+β-1/τ)),

(±(-α/τ+βτ-1), ±(α-β/τ-τ), ±(ατ+β+1/τ)) and

(±(α+β/τ-τ), ±(ατ-β+1/τ), ±(α/τ+βτ+1)),


with an even number of plus signs, where


β = (α2/τ+τ)/(ατ−1/τ),

where τ = (1+5)/2 is the golden mean and
α is the positive real root of τα4−α3+2α2−α−1/τ, or approximately 0.7964421.
Taking the odd permutations of the above coordinates with an odd number of plus signs gives another form, the enantiomorph of the other one.




Related polyhedra



Medial pentagonal hexecontahedron





























Medial pentagonal hexecontahedron

DU40 medial pentagonal hexecontahedron.png
Type
Star polyhedron
Face
DU40 facets.png
Elements
F = 60, E = 150
V = 84 (χ = −6)
Symmetry group I, [5,3]+, 532
Index references
DU40
dual polyhedron
Snub dodecadodecahedron

The medial pentagonal hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the snub dodecadodecahedron. It has 60 intersecting irregular pentagonal faces.



See also



  • List of uniform polyhedra

  • Inverted snub dodecadodecahedron



References



  • Wenninger, Magnus (1983), Dual Models, Cambridge University Press, doi:10.1017/CBO9780511569371, ISBN 978-0-521-54325-5, MR 0730208.mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


External links



  • Weisstein, Eric W. "Medial pentagonal hexecontahedron". MathWorld.

  • Weisstein, Eric W. "Snub dodecadodecahedron". MathWorld.

  • Uniform polyhedra and duals











Popular posts from this blog

Lambaréné

維納斯堡 (華盛頓州)

Mononymous person