Mersenne prime












































Mersenne prime
Named after Marin Mersenne
Publication year 1536[1]
Author of publication Regius, H.

No. of known terms
51
Conjectured no. of terms Infinite

Subsequence of
Mersenne numbers
First terms
3, 7, 31, 127
Largest known term
282,589,933 − 1 (December 7, 2018)

OEIS index

  • A000668

  • Mersenne primes (of form 2^p - 1 where p is a prime)


In mathematics, a Mersenne prime is a prime number that is one less than a power of two. That is, it is a prime number of the form Mn = 2n − 1 for some integer n. They are named after Marin Mersenne, a French Minim friar, who studied them in the early 17th century.


The exponents n which give Mersenne primes are 2, 3, 5, 7, 13, 17, 19, 31, ... (sequence A000043 in the OEIS) and the resulting Mersenne primes are 3, 7, 31, 127, 8191, 131071, 524287, 2147483647, ... (sequence A000668 in the OEIS).


If n is a composite number then so is 2n − 1. (2ab − 1 is divisible by both 2a − 1 and 2b − 1.) This definition is therefore equivalent to a definition as a prime number of the form Mp = 2p − 1 for some prime p.


More generally, numbers of the form Mn = 2n − 1 without the primality requirement may be called Mersenne numbers. Sometimes, however, Mersenne numbers are defined to have the additional requirement that n be prime.
The smallest composite Mersenne number with prime exponent n is 211 − 1 = 2047 = 23 × 89.


Mersenne primes Mp are also noteworthy due to their connection to perfect numbers.


As of December 2018[ref], 51 are now known. The largest known prime number 282,589,933 − 1 is a Mersenne prime.[2] Since 1997, all newly found Mersenne primes have been discovered by the Great Internet Mersenne Prime Search (GIMPS), a distributed computing project on the Internet.




Contents






  • 1 About Mersenne primes


  • 2 Perfect numbers


  • 3 History


  • 4 Searching for Mersenne primes


  • 5 Theorems about Mersenne numbers


  • 6 List of known Mersenne primes


  • 7 Factorization of composite Mersenne numbers


  • 8 Mersenne numbers in nature and elsewhere


  • 9 Mersenne–Fermat primes


  • 10 Generalizations


    • 10.1 Complex numbers


      • 10.1.1 Gaussian Mersenne primes


      • 10.1.2 Eisenstein Mersenne primes




    • 10.2 Divide an integer


      • 10.2.1 Repunit primes


      • 10.2.2 Other generalized Mersenne primes






  • 11 See also


  • 12 References


  • 13 External links


    • 13.1 MathWorld links







About Mersenne primes





Question dropshade.png
Unsolved problem in mathematics:
Are there infinitely many Mersenne primes?

(more unsolved problems in mathematics)

Many fundamental questions about Mersenne primes remain unresolved. It is not even known whether the set of Mersenne primes is finite or infinite. The Lenstra–Pomerance–Wagstaff conjecture asserts that there are infinitely many Mersenne primes and predicts their order of growth. It is also not known whether infinitely many Mersenne numbers with prime exponents are composite, although this would follow from widely believed conjectures about prime numbers, for example, the infinitude of Sophie Germain primes congruent to 3 (mod 4). For these primes p, 2p + 1 (which is also prime) will divide Mp, for example, 23 | M11, 47 | M23, 167 | M83, 263 | M131, 359 | M179, 383 | M191, 479 | M239, and 503 | M251 (sequence A002515 in the OEIS). Since for these primes p, 2p + 1 is congruent to 7 mod 8, so 2 is a quadratic residue mod 2p + 1, and the multiplicative order of 2 mod 2p + 1 must divide (2p+1)−12{displaystyle {frac {(2p+1)-1}{2}}}{displaystyle {frac {(2p+1)-1}{2}}} = p. Since p is a prime, it must be p or 1. However, it cannot be 1 since Φ1(2)=1{displaystyle Phi _{1}(2)=1}{displaystyle Phi _{1}(2)=1} and 1 has no prime factors, so it must be p. Hence, 2p + 1 divides Φp(2)=2p−1{displaystyle Phi _{p}(2)=2^{p}-1}{displaystyle Phi _{p}(2)=2^{p}-1} and 2p − 1 = Mp cannot be prime.


The first four Mersenne primes are M2 = 3, M3 = 7, M5 = 31 and M7 = 127 and because the first Mersenne prime starts at M2, all Mersenne primes are congruent to 3 (mod 4). Other than M0 = 0 and M1 = 1, all other Mersenne numbers are also congruent to 3 (mod 4). Consequently, in the prime factorization of a Mersenne number ( ≥ M2 ) there must be at least one prime factor congruent to 3 (mod 4).


A basic theorem about Mersenne numbers states that if Mp is prime, then the exponent p must also be prime. This follows from the identity


2ab−1=(2a−1)⋅(1+2a+22a+23a+⋯+2(b−1)a)=(2b−1)⋅(1+2b+22b+23b+⋯+2(a−1)b).{displaystyle {begin{aligned}2^{ab}-1&=(2^{a}-1)cdot left(1+2^{a}+2^{2a}+2^{3a}+cdots +2^{(b-1)a}right)\&=(2^{b}-1)cdot left(1+2^{b}+2^{2b}+2^{3b}+cdots +2^{(a-1)b}right).end{aligned}}}{begin{aligned}2^{ab}-1&=(2^{a}-1)cdot left(1+2^{a}+2^{2a}+2^{3a}+cdots +2^{(b-1)a}right)\&=(2^{b}-1)cdot left(1+2^{b}+2^{2b}+2^{3b}+cdots +2^{(a-1)b}right).end{aligned}}

This rules out primality for Mersenne numbers with composite exponent, such as M4 = 24 − 1 = 15 = 3 × 5 = (22 − 1) × (1 + 22).


Though the above examples might suggest that Mp is prime for all primes p, this is not the case, and the smallest counterexample is the Mersenne number



M11 = 211 − 1 = 2047 = 23 × 89.

The evidence at hand suggests that a randomly selected Mersenne number is much more likely to be prime than an arbitrary randomly selected odd integer of similar size.[citation needed] Nonetheless, prime values of Mp appear to grow increasingly sparse as p increases. For example, eight of the first 11 primes p give rise to a Mersenne prime Mp (the correct terms on Mersenne's original list), while Mp is prime for only 43 of the first two million prime numbers (up to 32,452,843).


The lack of any simple test to determine whether a given Mersenne number is prime makes the search for Mersenne primes a difficult task, since Mersenne numbers grow very rapidly. The Lucas–Lehmer primality test (LLT) is an efficient primality test that greatly aids this task, making it much easier to test the primality of Mersenne numbers than that of most other numbers of the same size. The search for the largest known prime has somewhat of a cult following. Consequently, a lot of computer power has been expended searching for new Mersenne primes, much of which is now done using distributed computing.


Mersenne primes are used in pseudorandom number generators such as the Mersenne twister, Park–Miller random number generator, Generalized Shift Register and Fibonacci RNG.



Perfect numbers



Mersenne primes Mp are also noteworthy due to their connection with perfect numbers. In the 4th century BC, Euclid proved that if 2p − 1 is prime, then 2p − 1(2p − 1) is a perfect number. This number, also expressible as Mp(Mp + 1)/2, is the Mpth triangular number and the 2p − 1th hexagonal number. In the 18th century, Leonhard Euler proved that, conversely, all even perfect numbers have this form.[3] This is known as the Euclid–Euler theorem. It is unknown whether there are any odd perfect numbers.



History




















































































2
3
5
7
11
13
17
19
23
29
31
37
41
43
47
53
59
61
67
71
73
79
83
89
97
101
103
107
109
113
127
131
137
139
149
151
157
163
167
173
179
181
191
193
197
199
211
223
227
229
233
239
241
251
257
263
269
271
277
281
283
293
307
311
The first 64 prime exponents with those corresponding to Mersenne primes shaded in cyan and in bold, and those thought to do so by Mersenne in red and bold.

Mersenne primes take their name from the 17th-century French scholar Marin Mersenne, who compiled what was supposed to be a list of Mersenne primes with exponents up to 257. The exponents listed by Mersenne were as follows:


2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257.

His list replicated the known primes of his time with exponents up to 19. His next entry, 31, was correct, but the list then became largely incorrect, as Mersenne mistakenly included M67 and M257 (which are composite) and omitted M61, M89, and M107 (which are prime). Mersenne gave little indication how he came up with his list.[4]


Édouard Lucas proved in 1876 that M127 is indeed prime, as Mersenne claimed. This was the largest known prime number for 75 years, and the largest ever found by hand. M61 was determined to be prime in 1883 by Ivan Mikheevich Pervushin, though Mersenne claimed it was composite, and for this reason it is sometimes called Pervushin's number. This was the second-largest known prime number, and it remained so until 1911. Lucas had shown another error in Mersenne's list in 1876. Without finding a factor, Lucas demonstrated that M67 is actually composite. No factor was found until a famous talk by Frank Nelson Cole in 1903.[5] Without speaking a word, he went to a blackboard and raised 2 to the 67th power, then subtracted one. On the other side of the board, he multiplied 193,707,721 × 761,838,257,287 and got the same number, then returned to his seat (to applause) without speaking.[6] He later said that the result had taken him "three years of Sundays" to find.[7] A correct list of all Mersenne primes in this number range was completed and rigorously verified only about three centuries after Mersenne published his list.



Searching for Mersenne primes


Fast algorithms for finding Mersenne primes are available, and as of 2018[update] the seven largest known prime numbers are Mersenne primes.


The first four Mersenne primes M2 = 3, M3 = 7, M5 = 31 and M7 = 127 were known in antiquity. The fifth, M13 = 8191, was discovered anonymously before 1461; the next two (M17 and M19) were found by Pietro Cataldi in 1588. After nearly two centuries, M31 was verified to be prime by Leonhard Euler in 1772. The next (in historical, not numerical order) was M127, found by Édouard Lucas in 1876, then M61 by Ivan Mikheevich Pervushin in 1883. Two more (M89 and M107) were found early in the 20th century, by R. E. Powers in 1911 and 1914, respectively.


The best method presently known for testing the primality of Mersenne numbers is the Lucas–Lehmer primality test. Specifically, it can be shown that for prime p > 2, Mp = 2p − 1 is prime if and only if Mp divides Sp − 2, where S0 = 4 and Sk = (Sk − 1)2 − 2 for k > 0.


During the era of manual calculation, all the exponents up to and including 257 were tested with the Lucas–Lehmer test and found to be composite. A notable contribution was made by retired Yale physics professor Horace Scudder Uhler, who did the calculations for exponents 157, 167, 193, 199, 227, and 229.[8] Unfortunately for those investigators, the interval they were testing contains the largest known gap between Mersenne primes, in relative terms: the next Mersenne prime exponent, 521, would turn out to be more than four times larger than the previous record of 127.




Graph of number of digits in largest known Mersenne prime by year – electronic era. Note that the vertical scale, the number of digits, is doubly logarithmic in the value of the prime.


The search for Mersenne primes was revolutionized by the introduction of the electronic digital computer. Alan Turing searched for them on the Manchester Mark 1 in 1949,[9] but the first successful identification of a Mersenne prime, M521, by this means was achieved at 10:00 pm on January 30, 1952 using the U.S. National Bureau of Standards Western Automatic Computer (SWAC) at the Institute for Numerical Analysis at the University of California, Los Angeles, under the direction of Lehmer, with a computer search program written and run by Prof. R. M. Robinson. It was the first Mersenne prime to be identified in thirty-eight years; the next one, M607, was found by the computer a little less than two hours later. Three more — M1279, M2203, M2281 — were found by the same program in the next several months. M4253 is the first Mersenne prime that is titanic, M44,497 is the first gigantic, and M6,972,593 was the first megaprime to be discovered, being a prime with at least 1,000,000 digits.[10] All three were the first known prime of any kind of that size. The number of digits in the decimal representation of Mn equals n × log102⌋ + 1, where x denotes the floor function (or equivalently ⌊log10Mn⌋ + 1).


In September 2008, mathematicians at UCLA participating in GIMPS won part of a $100,000 prize from the Electronic Frontier Foundation for their discovery of a very nearly 13-million-digit Mersenne prime. The prize, finally confirmed in October 2009, is for the first known prime with at least 10 million digits. The prime was found on a Dell OptiPlex 745 on August 23, 2008. This was the eighth Mersenne prime discovered at UCLA.[11]


On April 12, 2009, a GIMPS server log reported that a 47th Mersenne prime had possibly been found. The find was verified on June 12, 2009. The prime is 242,643,801 − 1. Although it is chronologically the 47th Mersenne prime to be discovered, it is smaller than the largest known at the time, which was the 45th to be discovered.


On January 25, 2013, Curtis Cooper, a mathematician at the University of Central Missouri, discovered a 48th Mersenne prime, 257,885,161 − 1 (a number with 17,425,170 digits), as a result of a search executed by a GIMPS server network.[12]


On January 19, 2016, Cooper published his discovery of a 49th Mersenne prime, 274,207,281 − 1 (a number with 22,338,618 digits), as a result of a search executed by a GIMPS server network.[13][14][15] This was the fourth Mersenne prime discovered by Cooper and his team in the past ten years.


On September 2, 2016, the Great Internet Mersenne Prime Search finished verifying all tests below M37,156,667, thus officially confirming its position as the 45th Mersenne prime. [16]


On January 3, 2018, it was announced that Jonathan Pace, a 51-year-old electrical engineer living in Germantown, Tennessee, had found a 50th Mersenne prime, 277,232,917 − 1 (a number with 23,249,425 digits), as a result of a search executed by a GIMPS server network.[17]


On December 21, 2018, it was announced that The Great Internet Mersenne Prime Search (GIMPS) discovered the largest known prime number, 282,589,933 - 1, having 24,862,048 digits. A computer volunteered by Patrick Laroche from Ocala, Florida made the find on December 7, 2018. [18]



Theorems about Mersenne numbers



  1. If a and p are natural numbers such that ap − 1 is prime, then a = 2 or p = 1.

    • Proof: a ≡ 1 (mod a − 1). Then ap ≡ 1 (mod a − 1), so ap − 1 ≡ 0 (mod a − 1). Thus a − 1 | ap − 1. However, ap − 1 is prime, so a − 1 = ap − 1 or a − 1 = ±1. In the former case, a = ap, hence a = 0,1 (which is a contradiction, as neither −1 nor 0 is prime) or p = 1. In the latter case, a = 2 or a = 0. If a = 0, however, 0p − 1 = 0 − 1 = −1 which is not prime. Therefore, a = 2.


  2. If 2p − 1 is prime, then p is prime.

    • Proof: suppose that p is composite, hence can be written p = ab with a and b > 1. Then 2p − 1 = 2ab − 1 = (2a)b − 1 = (2a − 1)((2a)b − 1 + (2a)b − 2 + … + 2a + 1) so 2p − 1 is composite. By contrapositive, if 2p − 1 is prime then p is prime.


  3. If p is an odd prime, then every prime q that divides 2p − 1 must be 1 plus a multiple of 2p. This holds even when 2p − 1 is prime.

    • For example, 25 − 1 = 31 is prime, and 31 = 1 + 3 × (2 × 5). A composite example is 211 − 1 = 23 × 89, where 23 = 1 + (2 × 11) and 89 = 1 + 4 × (2 × 11).


    • Proof: By Fermat's little theorem, q is a factor of 2q − 1 − 1. Since q is a factor of 2p − 1, for all positive integers c, q is also a factor of 2pc − 1. Since p is prime and q is not a factor of 21 − 1, p is also the smallest positive integer x such that q is a factor of 2x − 1. As a result, for all positive integers x, q is a factor of 2x − 1 if and only if p is a factor of x. Therefore, since q is a factor of 2q − 1 − 1, p is a factor of q − 1 so q ≡ 1 (mod p). Furthermore, since q is a factor of 2p − 1, which is odd, q is odd. Therefore, q ≡ 1 (mod 2p).

    • This fact leads to a proof of Euclid's theorem, which asserts the infinitude of primes, distinct from the proof written by Euclid: for every odd prime p, all primes dividing 2p − 1 are larger than p; thus there are always larger primes than any particular prime.

    • It follows from this fact that for every prime p > 2, there is at least one prime of the form 2kp+1 less than or equal to Mp, for some integer k.



  4. If p is an odd prime, then every prime q that divides 2p − 1 is congruent to ±1 (mod 8).

    • Proof: 2p + 1 ≡ 2 (mod q), so 21/2(p + 1) is a square root of 2 mod q. By quadratic reciprocity, every prime modulo in which the number 2 has a square root is congruent to ±1 (mod 8).


  5. A Mersenne prime cannot be a Wieferich prime.

    • Proof: We show if p = 2m − 1 is a Mersenne prime, then the congruence 2p − 1 ≡ 1 (mod p2) does not hold. By Fermat's little theorem, m | p − 1. Therefore, one can write p − 1 = . If the given congruence is satisfied, then p2 | 2 − 1, therefore 0 ≡ 2 − 1/2m − 1 = 1 + 2m + 22m + ... + 2(λ − 1)m ≡ −λ mod (2m − 1). Hence 2m − 1 | λ, and therefore λ ≥ 2m − 1. This leads to p − 1 ≥ m(2m − 1), which is impossible since m ≥ 2.


  6. If m and n are natural numbers then m and n are coprime if and only if 2m − 1 and 2n − 1 are coprime. Consequently, a prime number divides at most one prime-exponent Mersenne number,[19] so in other words the set of pernicious Mersenne numbers is pairwise coprime.

  7. If p and 2p + 1 are both prime (meaning that p is a Sophie Germain prime), and p is congruent to 3 (mod 4), then 2p + 1 divides 2p − 1.[20]


    • Example: 11 and 23 are both prime, and 11 = 2 × 4 + 3, so 23 divides 211 − 1.


    • Proof: Let q be 2p + 1. By Fermat's little theorem, 22p ≡ 1 (mod q), so either 2p ≡ 1 (mod q) or 2p ≡ −1 (mod q). Supposing latter true, then 2p + 1 = (21/2(p + 1))2 ≡ −2 (mod q), so −2 would be a quadratic residue mod q. However, since p is congruent to 3 (mod 4), q is congruent to 7 (mod 8) and therefore 2 is a quadratic residue mod q. Also since q is congruent to 3 (mod 4), −1 is a quadratic nonresidue mod q, so −2 is the product of a residue and a nonresidue and hence it is a nonresidue, which is a contradiction. Hence, the former congruence must be true and 2p + 1 divides Mp.



  8. All composite divisors of prime-exponent Mersenne numbers are strong pseudoprimes to the base 2.

  9. With the exception of 1, a Mersenne number cannot be a perfect power. In other words and in accordance with Mihăilescu's theorem, the equation 2m-1 = nk has no solutions where m, n, and k are integers with m > 1 and k > 1.



List of known Mersenne primes


The table below lists all known Mersenne primes (sequence A000043 (p) and A000668 (Mp) in OEIS):























































































































































































































































































































































































































































































#

p

Mp

Mp digits
Discovered
Discoverer
Method used
1
2

3
1
c. 430 BC

Ancient Greek mathematicians[21]

2
3

7
1
c. 430 BC
Ancient Greek mathematicians[21]

3
5

31
2
c. 300 BC
Ancient Greek mathematicians[22]

4
7

127
3
c. 300 BC
Ancient Greek mathematicians[22]

5
13
8191
4
1456
Anonymous[23][24]

Trial division
6
17
131071
6
1588[25]

Pietro Cataldi
Trial division[26]
7
19
524287
6
1588
Pietro Cataldi
Trial division[27]
8
31

2147483647
10
1772

Leonhard Euler[28][29]
Enhanced trial division[30]
9
61
2305843009213693951
19
1883 November[31]

Ivan M. Pervushin

Lucas sequences
10
89
618970019642...137449562111
27
1911 June[32]

Ralph Ernest Powers
Lucas sequences
11
107
162259276829...578010288127
33
1914 June 1[33][34][35]
Ralph Ernest Powers[36]
Lucas sequences
12
127
170141183460...715884105727
39
1876 January 10[37]

Édouard Lucas
Lucas sequences
13
521
686479766013...291115057151
157
1952 January 30[38]

Raphael M. Robinson

LLT / SWAC
14
607
531137992816...219031728127
183
1952 January 30[38]
Raphael M. Robinson
LLT / SWAC
15
1,279
104079321946...703168729087
386
1952 June 25[39]
Raphael M. Robinson
LLT / SWAC
16
2,203
147597991521...686697771007
664
1952 October 7[40]
Raphael M. Robinson
LLT / SWAC
17
2,281
446087557183...418132836351
687
1952 October 9[40]
Raphael M. Robinson
LLT / SWAC
18
3,217
259117086013...362909315071
969
1957 September 8[41]

Hans Riesel
LLT / BESK
19
4,253
190797007524...815350484991
1,281
1961 November 3[42][43]
Alexander Hurwitz
LLT / IBM 7090
20
4,423
285542542228...902608580607
1,332
1961 November 3[42][43]
Alexander Hurwitz
LLT / IBM 7090
21
9,689
478220278805...826225754111
2,917
1963 May 11[44]

Donald B. Gillies
LLT / ILLIAC II
22
9,941
346088282490...883789463551
2,993
1963 May 16[44]
Donald B. Gillies
LLT / ILLIAC II
23
11,213
281411201369...087696392191
3,376
1963 June 2[44]
Donald B. Gillies
LLT / ILLIAC II
24
19,937
431542479738...030968041471
6,002
1971 March 4[45]

Bryant Tuckerman
LLT / IBM 360/91
25
21,701
448679166119...353511882751
6,533
1978 October 30[46]

Landon Curt Noll & Laura Nickel
LLT / CDC Cyber 174
26
23,209
402874115778...523779264511
6,987
1979 February 9[47]
Landon Curt Noll
LLT / CDC Cyber 174
27
44,497
854509824303...961011228671
13,395
1979 April 8[48][49]

Harry L. Nelson & David Slowinski
LLT / Cray 1
28
86,243
536927995502...709433438207
25,962
1982 September 25
David Slowinski
LLT / Cray 1
29
110,503
521928313341...083465515007
33,265
1988 January 29[50][51]
Walter Colquitt & Luke Welsh
LLT / NEC SX-2[52]
30
132,049
512740276269...455730061311
39,751
1983 September 19[53]
David Slowinski
LLT / Cray X-MP
31
216,091
746093103064...103815528447
65,050
1985 September 1[54][55]
David Slowinski
LLT / Cray X-MP/24
32
756,839
174135906820...328544677887
227,832
1992 February 17
David Slowinski & Paul Gage
LLT / Harwell Lab's Cray-2[56]
33
859,433
129498125604...243500142591
258,716
1994 January 4[57][58][59]
David Slowinski & Paul Gage
LLT / Cray C90
34
1,257,787
412245773621...976089366527
378,632
1996 September 3[60]
David Slowinski & Paul Gage[61]
LLT / Cray T94
35
1,398,269
814717564412...868451315711
420,921
1996 November 13

GIMPS / Joel Armengaud[62]
LLT / Prime95 on 90 MHz Pentium
36
2,976,221
623340076248...743729201151
895,932
1997 August 24
GIMPS / Gordon Spence[63]
LLT / Prime95 on 100 MHz Pentium
37
3,021,377
127411683030...973024694271
909,526
1998 January 27
GIMPS / Roland Clarkson[64]
LLT / Prime95 on 200 MHz Pentium
38
6,972,593
437075744127...142924193791
2,098,960
1999 June 1
GIMPS / Nayan Hajratwala[65]
LLT / Prime95 on 350 MHz Pentium II IBM Aptiva
39
13,466,917
924947738006...470256259071
4,053,946
2001 November 14
GIMPS / Michael Cameron[66]
LLT / Prime95 on 800 MHz Athlon T-Bird
40
20,996,011
125976895450...762855682047
6,320,430
2003 November 17
GIMPS / Michael Shafer[67]
LLT / Prime95 on 2 GHz Dell Dimension
41
24,036,583
299410429404...882733969407
7,235,733
2004 May 15
GIMPS / Josh Findley[68]
LLT / Prime95 on 2.4 GHz Pentium 4
42
25,964,951
122164630061...280577077247
7,816,230
2005 February 18
GIMPS / Martin Nowak[69]
LLT / Prime95 on 2.4 GHz Pentium 4
43
30,402,457
315416475618...411652943871
9,152,052
2005 December 15
GIMPS / Curtis Cooper & Steven Boone[70]
LLT / Prime95 on 2 GHz Pentium 4
44
32,582,657
124575026015...154053967871
9,808,358
2006 September 4
GIMPS / Curtis Cooper & Steven Boone[71]
LLT / Prime95 on 3 GHz Pentium 4
45
37,156,667
202254406890...022308220927
11,185,272
2008 September 6
GIMPS / Hans-Michael Elvenich[72]
LLT / Prime95 on 2.83 GHz Core 2 Duo
46
42,643,801
169873516452...765562314751
12,837,064
2009 June 4[n 1]
GIMPS / Odd M. Strindmo[73][n 2]
LLT / Prime95 on 3 GHz Core 2
47
43,112,609
316470269330...166697152511
12,978,189
2008 August 23
GIMPS / Edson Smith[72]
LLT / Prime95 on Dell Optiplex 745
48[n 3]
57,885,161
581887266232...071724285951
17,425,170
2013 January 25
GIMPS / Curtis Cooper[74]
LLT / Prime95 on 3 GHz Intel Core2 Duo E8400[75]
49[n 3]
74,207,281
300376418084...391086436351
22,338,618
2015 September 17[n 4]
GIMPS / Curtis Cooper[13]
LLT / Prime95 on Intel Core i7-4790
50[n 3]
77,232,917
467333183359...069762179071
23,249,425
2017 December 26
GIMPS / Jon Pace[76]
LLT / Prime95 on 3.3 GHz Intel Core i5-6600[77]
51[n 3]
82,589,933
148894445742...325217902591
24,862,048
2018 December 7
GIMPS / Patrick Laroche[2]
LLT / Prime95 on Intel Core i5-4590T



  1. ^ M42,643,801 was first found by a machine on April 12, 2009; however, no human took notice of this fact until June 4. Thus, either April 12 or June 4 may be considered the 'discovery' date.


  2. ^ Strindmo also uses the alias Stig M. Valstad.


  3. ^ abcd It is not verified whether any undiscovered Mersenne primes exist between the 47th (M43,112,609) and the 51st (M82,589,933) on this chart; the ranking is therefore provisional.


  4. ^ M74,207,281 was first found by a machine on September 17, 2015; however, no human took notice of this fact until January 7, 2016. Thus, either date may be considered the 'discovery' date. GIMPS considers the January 2016 date to be the official one.


All Mersenne numbers below the 50th Mersenne prime (M77,232,917) have been tested at least once but some have not been double-checked. Primes are not always discovered in increasing order. For example, the 29th Mersenne prime was discovered after the 30th and the 31st. Similarly, M43,112,609 was followed by two smaller Mersenne primes, first 2 weeks later and then 8 months later.[78]M43,112,609 was the first discovered prime number with more than 10 million decimal digits.


The largest known Mersenne prime (282,589,933 − 1) is also the largest known prime number.[2]


In modern times, the largest known prime has almost always been a Mersenne prime.[79]



Factorization of composite Mersenne numbers


Since they are prime numbers, Mersenne primes are divisible only by 1 and by themselves. However, not all Mersenne numbers are Mersenne primes, and the composite Mersenne numbers may be factored nontrivially. Mersenne numbers are very good test cases for the special number field sieve algorithm, so often the largest number factorized with this algorithm has been a Mersenne number. As of August 2016[update], 21,193 − 1 is the record-holder,[80] having been factored with a variant of the special number field sieve that allows the factorization of several numbers at once. See integer factorization records for links to more information. The special number field sieve can factorize numbers with more than one large factor. If a number has only one very large factor then other algorithms can factorize larger numbers by first finding small factors and then making a primality test on the cofactor. As of March 2018[update], the largest factorization with probable prime factors allowed is 27,313,983 − 1 = 305,492,080,276,193 × q, where q is a 2,201,714-digit probable prime. It was discovered by Oliver Kruse.[81] As of June 2018[update], the Mersenne number M1277 is the smallest composite Mersenne number with no known factors; it has no prime factors below 267.[82]


The table below shows factorizations for the first 20 composite Mersenne numbers (sequence A244453 in the OEIS).













































































































p

Mp
Factorization of Mp
11
2047
23 × 89
23
8388607
47 × 178,481
29
536870911
233 × 1,103 × 2,089
37
137438953471
223 × 616,318,177
41
2199023255551
13,367 × 164,511,353
43
8796093022207
431 × 9,719 × 2,099,863
47
140737488355327
2,351 × 4,513 × 13,264,529
53
9007199254740991
6,361 × 69,431 × 20,394,401
59
57646075230343487
179,951 × 3,203,431,780,337 (13 digits)
67
147573952589676412927
193,707,721 × 761,838,257,287 (12 digits)
71
2361183241434822606847
228,479 × 48,544,121 × 212,885,833
73
9444732965739290427391
439 × 2,298,041 × 9,361,973,132,609 (13 digits)
79
604462903807314587353087
2,687 × 202,029,703 × 1,113,491,139,767 (13 digits)
83
967140655691...033397649407
167 × 57,912,614,113,275,649,087,721 (23 digits)
97
158456325028...187087900671
11,447 × 13,842,607,235,828,485,645,766,393 (26 digits)
101
253530120045...993406410751
7,432,339,208,719 (13 digits) × 341,117,531,003,194,129 (18 digits)
103
101412048018...973625643007
2,550,183,799 × 3,976,656,429,941,438,590,393 (22 digits)
109
649037107316...312041152511
745,988,807 × 870,035,986,098,720,987,332,873 (24 digits)
113
103845937170...992658440191
3,391 × 23,279 × 65,993 × 1,868,569 × 1,066,818,132,868,207 (16 digits)
131
272225893536...454145691647
263 × 10,350,794,431,055,162,386,718,619,237,468,234,569 (38 digits)

The number of factors for the first 500 Mersenne numbers can be found at (sequence A046800 in the OEIS).



Mersenne numbers in nature and elsewhere


In the mathematical problem Tower of Hanoi, solving a puzzle with an n-disc tower requires Mn steps, assuming no mistakes are made.[83] The number of rice grains on the whole chessboard in the wheat and chessboard problem is M64.


The asteroid with minor planet number 8191 is named 8191 Mersenne after Marin Mersenne, because 8191 is a Mersenne prime (3 Juno, 7 Iris, 31 Euphrosyne and 127 Johanna having been discovered and named during the 19th century).[84]


In geometry, an integer right triangle that is primitive and has its even leg a power of 2 ( ≥ 4 ) generates a unique right triangle such that its inradius is always a Mersenne number. For example, if the even leg is 2n + 1 then because it is primitive it constrains the odd leg to be 4n − 1, the hypotenuse to be 4n + 1 and its inradius to be 2n − 1.[85]


The Mersenne numbers were studied with respect to the total number of accepting paths of non-deterministic polynomial time Turing machines in [86] and intriguing inclusions were discovered.



Mersenne–Fermat primes


A Mersenne–Fermat number is defined as 2pr − 1/2pr − 1 − 1, with p prime, r natural number, and can be written as MF(p, r), when r = 1, it is a Mersenne number, and when p = 2, it is a Fermat number, the only known Mersenne–Fermat prime with r > 1 are



MF(2, 2), MF(3, 2), MF(7, 2), MF(59, 2), MF(2, 3), MF(3, 3), MF(2, 4), and MF(2, 5).[87]

In fact, MF(p, r) = Φpr(2), where Φ is the cyclotomic polynomial.



Generalizations


The simplest generalized Mersenne primes are prime numbers of the form f(2n), where f(x) is a low-degree polynomial with small integer coefficients.[88] An example is 264 − 232 + 1, in this case, n = 32, and f(x) = x2x + 1; another example is 2192 − 264 − 1, in this case, n = 64, and f(x) = x3x − 1.


It is also natural to try to generalize primes of the form 2n − 1 to primes of the form bn − 1 (for b ≠ 2 and n > 1). However (see also theorems above), bn − 1 is always divisible by b − 1, so unless the latter is a unit, the former is not a prime. This can be remedied by allowing b to be an algebraic integer instead of an integer:



Complex numbers


In the ring of integers (on real numbers), if b − 1 is a unit, then b is either 2 or 0. But 2n − 1 are the usual Mersenne primes, and the formula 0n − 1 does not lead to anything interesting (since it is always −1 for all n > 0). Thus, we can regard a ring of "integers" on complex numbers instead of real numbers, like Gaussian integers and Eisenstein integers.



Gaussian Mersenne primes


If we regard the ring of Gaussian integers, we get the case b = 1 + i and b = 1 − i, and can ask (WLOG) for which n the number (1 + i)n − 1 is a Gaussian prime which will then be called a Gaussian Mersenne prime.[89]


(1 + i)n − 1 is a Gaussian prime for the following n:


2, 3, 5, 7, 11, 19, 29, 47, 73, 79, 113, 151, 157, 163, 167, 239, 241, 283, 353, 367, 379, 457, 997, 1367, 3041, 10141, 14699, 27529, 49207, 77291, 85237, 106693, 160423, 203789, 364289, 991961, 1203793, 1667321, 3704053, 4792057, ... (sequence A057429 in the OEIS)

Like the sequence of exponents for usual Mersenne primes, this sequence contains only (rational) prime numbers.


As for all Gaussian primes, the norms (that is, squares of absolute values) of these numbers are rational primes:


5, 13, 41, 113, 2113, 525313, 536903681, 140737471578113, ... (sequence A182300 in the OEIS).


Eisenstein Mersenne primes


We can also regard the ring of Eisenstein integers, we get the case b = 1 + ω and b = 1 − ω, and can ask for what n the number (1 + ω)n − 1 is an Eisenstein prime which will then be called a Eisenstein Mersenne prime.


(1 + ω)n − 1 is an Eisenstein prime for the following n:


2, 5, 7, 11, 17, 19, 79, 163, 193, 239, 317, 353, 659, 709, 1049, 1103, 1759, 2029, 5153, 7541, 9049, 10453, 23743, 255361, 534827, 2237561, ... (sequence A066408 in the OEIS)

The norms (that is, squares of absolute values) of these Eisenstein primes are rational primes:


7, 271, 2269, 176419, 129159847, 1162320517, ... (sequence A066413 in the OEIS)


Divide an integer



Repunit primes



The other way to deal with the fact that bn − 1 is always divisible by b − 1, it is to simply take out this factor and ask which values of n make


bn−1b−1{displaystyle {frac {b^{n}-1}{b-1}}}{frac {b^{n}-1}{b-1}}

be prime. (The integer b can be either positive or negative.) If, for example, we take b = 10, we get n values of:


2, 19, 23, 317, 1031, 49081, 86453, 109297, 270343, ... (sequence A004023 in the OEIS),
corresponding to primes 11, 1111111111111111111, 11111111111111111111111, ... (sequence A004022 in the OEIS).

These primes are called repunit primes. Another example is when we take b = −12, we get n values of:


2, 5, 11, 109, 193, 1483, 11353, 21419, 21911, 24071, 106859, 139739, ... (sequence A057178 in the OEIS),
corresponding to primes −11, 19141, 57154490053, ....

It is a conjecture that for every integer b which is not a perfect power, there are infinitely many values of n such that bn − 1/b − 1 is prime. (When b is a perfect power, it can be shown that there is at most one n value such that bn − 1/b − 1 is prime)


Least n such that bn − 1/b − 1 is prime are (starting with b = 2, 0 if no such n exists)


2, 3, 2, 3, 2, 5, 3, 0, 2, 17, 2, 5, 3, 3, 2, 3, 2, 19, 3, 3, 2, 5, 3, 0, 7, 3, 2, 5, 2, 7, 0, 3, 13, 313, 2, 13, 3, 349, 2, 3, 2, 5, 5, 19, 2, 127, 19, 0, 3, 4229, 2, 11, 3, 17, 7, 3, 2, 3, 2, 7, 3, 5, 0, 19, 2, 19, 5, 3, 2, 3, 2, ... (sequence A084740 in the OEIS)

For negative bases b, they are (starting with b = −2, 0 if no such n exists)


3, 2, 2, 5, 2, 3, 2, 3, 5, 5, 2, 3, 2, 3, 3, 7, 2, 17, 2, 3, 3, 11, 2, 3, 11, 0, 3, 7, 2, 109, 2, 5, 3, 11, 31, 5, 2, 3, 53, 17, 2, 5, 2, 103, 7, 5, 2, 7, 1153, 3, 7, 21943, 2, 3, 37, 53, 3, 17, 2, 7, 2, 3, 0, 19, 7, 3, 2, 11, 3, 5, 2, ... (sequence A084742 in the OEIS) (notice this OEIS sequence does not allow n = 2)

Least base b such that bprime(n) − 1/b − 1 is prime are


2, 2, 2, 2, 5, 2, 2, 2, 10, 6, 2, 61, 14, 15, 5, 24, 19, 2, 46, 3, 11, 22, 41, 2, 12, 22, 3, 2, 12, 86, 2, 7, 13, 11, 5, 29, 56, 30, 44, 60, 304, 5, 74, 118, 33, 156, 46, 183, 72, 606, 602, 223, 115, 37, 52, 104, 41, 6, 338, 217, ... (sequence A066180 in the OEIS)

For negative bases b, they are


3, 2, 2, 2, 2, 2, 2, 2, 2, 7, 2, 16, 61, 2, 6, 10, 6, 2, 5, 46, 18, 2, 49, 16, 70, 2, 5, 6, 12, 92, 2, 48, 89, 30, 16, 147, 19, 19, 2, 16, 11, 289, 2, 12, 52, 2, 66, 9, 22, 5, 489, 69, 137, 16, 36, 96, 76, 117, 26, 3, ... (sequence A103795 in the OEIS)


Other generalized Mersenne primes


Another generalized Mersenne number is


an−bna−b{displaystyle {frac {a^{n}-b^{n}}{a-b}}}{frac {a^{n}-b^{n}}{a-b}}

with a, b any coprime integers, a > 1 and a < b < a. (Since anbn is always divisible by ab, the division is necessary for there to be any chance of finding prime numbers. In fact, this number is the same as the Lucas number Un(a + b, ab), since a and b are the roots of the quadratic equation x2 − (a + b)x + ab = 0, and this number equals 1 when n = 1) We can ask which n makes this number prime. It can be shown that such n must be primes themselves or equal to 4, and n can be 4 if and only if a + b = 1 and a2 + b2 is prime. (Since a4b4/ab = (a + b)(a2 + b2). Thus, in this case the pair (a, b) must be (x + 1, −x) and x2 + (x + 1)2 must be prime. That is, x must be in OEIS: A027861.) It is a conjecture that for any pair (a, b) such that for every natural number r > 1, a and b are not both perfect rth powers, and −4ab is not a perfect fourth power. there are infinitely many values of n such that anbn/ab is prime. (When a and b are both perfect rth powers for an r > 1 or when −4ab is a perfect fourth power, it can be shown that there are at most two n values with this property, since if so, then anbn/ab can be factored algebraically) However, this has not been proved for any single value of (a, b).








































































































































































































































































































































































































































































































































































For more information, see [90][91][92][93][94][95][96][97][98][99]

a

b
numbers n such that anbn/ab is prime
(some large terms are only probable primes, these n are checked up to 100000 for |b| ≤ 5 or |b| = a − 1, 20000 for 5 < |b| < a − 1)

OEIS sequence
2
1
2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609, ..., 57885161, ..., 74207281, ..., 77232917, ...,

A000043
2
−1
3, 4*, 5, 7, 11, 13, 17, 19, 23, 31, 43, 61, 79, 101, 127, 167, 191, 199, 313, 347, 701, 1709, 2617, 3539, 5807, 10501, 10691, 11279, 12391, 14479, 42737, 83339, 95369, 117239, 127031, 138937, 141079, 267017, 269987, 374321, 986191, 4031399, ..., 13347311, 13372531, ...

A000978
3
2
2, 3, 5, 17, 29, 31, 53, 59, 101, 277, 647, 1061, 2381, 2833, 3613, 3853, 3929, 5297, 7417, 90217, 122219, 173191, 256199, 336353, 485977, 591827, 1059503, ...

A057468
3
1
3, 7, 13, 71, 103, 541, 1091, 1367, 1627, 4177, 9011, 9551, 36913, 43063, 49681, 57917, 483611, 877843, ...

A028491
3
−1
2*, 3, 5, 7, 13, 23, 43, 281, 359, 487, 577, 1579, 1663, 1741, 3191, 9209, 11257, 12743, 13093, 17027, 26633, 104243, 134227, 152287, 700897, 1205459, ...

A007658
3
−2
3, 4*, 7, 11, 83, 149, 223, 599, 647, 1373, 8423, 149497, 388897, ...

A057469
4
3
2, 3, 7, 17, 59, 283, 311, 383, 499, 521, 541, 599, 1193, 1993, 2671, 7547, 24019, 46301, 48121, 68597, 91283, 131497, 148663, 184463, 341233, ...

A059801
4
1
2 (no others)

4
−1
2*, 3 (no others)

4
−3
3, 5, 19, 37, 173, 211, 227, 619, 977, 1237, 2437, 5741, 13463, 23929, 81223, 121271, ...

A128066
5
4
3, 43, 59, 191, 223, 349, 563, 709, 743, 1663, 5471, 17707, 19609, 35449, 36697, 45259, 91493, 246497, 265007, 289937, ...

A059802
5
3
13, 19, 23, 31, 47, 127, 223, 281, 2083, 5281, 7411, 7433, 19051, 27239, 35863, 70327, ...

A121877
5
2
2, 5, 7, 13, 19, 37, 59, 67, 79, 307, 331, 599, 1301, 12263, 12589, 18443, 20149, 27983, ...

A082182
5
1
3, 7, 11, 13, 47, 127, 149, 181, 619, 929, 3407, 10949, 13241, 13873, 16519, 201359, 396413, 1888279, ...

A004061
5
−1
5, 67, 101, 103, 229, 347, 4013, 23297, 30133, 177337, 193939, 266863, 277183, 335429, ...

A057171
5
−2
2*, 3, 17, 19, 47, 101, 1709, 2539, 5591, 6037, 8011, 19373, 26489, 27427, ...

A082387
5
−3
2*, 3, 5, 7, 17, 19, 109, 509, 661, 709, 1231, 12889, 13043, 26723, 43963, 44789, ...

A122853
5
−4
4*, 5, 7, 19, 29, 61, 137, 883, 1381, 1823, 5227, 25561, 29537, 300893, ...

A128335
6
5
2, 5, 11, 13, 23, 61, 83, 421, 1039, 1511, 31237, 60413, 113177, 135647, 258413, ...

A062572
6
1
2, 3, 7, 29, 71, 127, 271, 509, 1049, 6389, 6883, 10613, 19889, 79987, 608099, ...

A004062
6
−1
2*, 3, 11, 31, 43, 47, 59, 107, 811, 2819, 4817, 9601, 33581, 38447, 41341, 131891, 196337, ...

A057172
6
−5
3, 4*, 5, 17, 397, 409, 643, 1783, 2617, 4583, 8783, ...

A128336
7
6
2, 3, 7, 29, 41, 67, 1327, 1399, 2027, 69371, 86689, 355039, ...

A062573
7
5
3, 5, 7, 113, 397, 577, 7573, 14561, 58543, ...

A128344
7
4
2, 5, 11, 61, 619, 2879, 2957, 24371, 69247, ...

A213073
7
3
3, 7, 19, 109, 131, 607, 863, 2917, 5923, 12421, ...

A128024
7
2
3, 7, 19, 79, 431, 1373, 1801, 2897, 46997, ...

A215487
7
1
5, 13, 131, 149, 1699, 14221, 35201, 126037, 371669, 1264699, ...

A004063
7
−1
3, 17, 23, 29, 47, 61, 1619, 18251, 106187, 201653, ...

A057173
7
−2
2*, 5, 23, 73, 101, 401, 419, 457, 811, 1163, 1511, 8011, ...

A125955
7
−3
3, 13, 31, 313, 3709, 7933, 14797, 30689, 38333, ...

A128067
7
−4
2*, 3, 5, 19, 41, 47, 8231, 33931, 43781, 50833, 53719, 67211, ...

A218373
7
−5
2*, 11, 31, 173, 271, 547, 1823, 2111, 5519, 7793, 22963, 41077, 49739, ...

A128337
7
−6
3, 53, 83, 487, 743, ...

A187805
8
7
7, 11, 17, 29, 31, 79, 113, 131, 139, 4357, 44029, 76213, 83663, 173687, 336419, 615997, ...

A062574
8
5
2, 19, 1021, 5077, 34031, 46099, 65707, ...

A128345
8
3
2, 3, 7, 19, 31, 67, 89, 9227, 43891, ...

A128025
8
1
3 (no others)

8
−1
2* (no others)

8
−3
2*, 5, 163, 191, 229, 271, 733, 21059, 25237, ...

A128068
8
−5
2*, 7, 19, 167, 173, 223, 281, 21647, ...

A128338
8
−7
4*, 7, 13, 31, 43, 269, 353, 383, 619, 829, 877, 4957, 5711, 8317, 21739, 24029, 38299, ...

A181141
9
8
2, 7, 29, 31, 67, 149, 401, 2531, 19913, 30773, 53857, 170099, ...

A059803
9
7
3, 5, 7, 4703, 30113, ...

A273010
9
5
3, 11, 17, 173, 839, 971, 40867, 45821, ...

A128346
9
4
2 (no others)

9
2
2, 3, 5, 13, 29, 37, 1021, 1399, 2137, 4493, 5521, ...

A173718
9
1
(none)

9
−1
3, 59, 223, 547, 773, 1009, 1823, 3803, 49223, 193247, 703393, ...

A057175
9
−2
2*, 3, 7, 127, 283, 883, 1523, 4001, ...

A125956
9
−4
2*, 3, 5, 7, 11, 17, 19, 41, 53, 109, 167, 2207, 3623, 5059, 5471, 7949, 21211, 32993, 60251, ...

A211409
9
−5
3, 5, 13, 17, 43, 127, 229, 277, 6043, 11131, 11821, ...

A128339
9
−7
2*, 3, 107, 197, 2843, 3571, 4451, ..., 31517, ...

A301369
9
−8
3, 7, 13, 19, 307, 619, 2089, 7297, 75571, 76103, 98897, ...

A187819
10
9
2, 3, 7, 11, 19, 29, 401, 709, 2531, 15787, 66949, 282493, ...

A062576
10
7
2, 31, 103, 617, 10253, 10691, ...

A273403
10
3
2, 3, 5, 37, 599, 38393, 51431, ...

A128026
10
1
2, 19, 23, 317, 1031, 49081, 86453, 109297, 270343, ...

A004023
10
−1
5, 7, 19, 31, 53, 67, 293, 641, 2137, 3011, 268207, ...

A001562
10
−3
2*, 3, 19, 31, 101, 139, 167, 1097, 43151, 60703, 90499, ...

A128069
10
−7
2*, 3, 5, 11, 19, 1259, 1399, 2539, 2843, 5857, 10589, ...

10
−9
4*, 7, 67, 73, 1091, 1483, 10937, ...

A217095
11
10
3, 5, 19, 311, 317, 1129, 4253, 7699, 18199, 35153, 206081, ...

A062577
11
9
5, 31, 271, 929, 2789, 4153, ...

A273601
11
8
2, 7, 11, 17, 37, 521, 877, 2423, ...

A273600
11
7
5, 19, 67, 107, 593, 757, 1801, 2243, 2383, 6043, 10181, 11383, 15629, ...

A273599
11
6
2, 3, 11, 163, 191, 269, 1381, 1493, ...

A273598
11
5
5, 41, 149, 229, 263, 739, 3457, 20269, 98221, ...

A128347
11
4
3, 5, 11, 17, 71, 89, 827, 22307, 45893, 63521, ...

A216181
11
3
3, 5, 19, 31, 367, 389, 431, 2179, 10667, 13103, 90397, ...

A128027
11
2
2, 5, 11, 13, 331, 599, 18839, 23747, 24371, 29339, 32141, 67421, ...

A210506
11
1
17, 19, 73, 139, 907, 1907, 2029, 4801, 5153, 10867, 20161, 293831, ...

A005808
11
−1
5, 7, 179, 229, 439, 557, 6113, 223999, 327001, ...

A057177
11
−2
3, 5, 17, 67, 83, 101, 1373, 6101, 12119, 61781, ...

A125957
11
−3
3, 103, 271, 523, 23087, 69833, ...

A128070
11
−4
2*, 7, 53, 67, 71, 443, 26497, ...

A224501
11
−5
7, 11, 181, 421, 2297, 2797, 4129, 4139, 7151, 29033, ...

A128340
11
−6
2*, 5, 7, 107, 383, 17359, 21929, 26393, ...

11
−7
7, 1163, 4007, 10159, ...

11
−8
2*, 3, 13, 31, 59, 131, 223, 227, 1523, ...

11
−9
2*, 3, 17, 41, 43, 59, 83, ...

11
−10
53, 421, 647, 1601, 35527, ...

A185239
12
11
2, 3, 7, 89, 101, 293, 4463, 70067, ...

A062578
12
7
2, 3, 7, 13, 47, 89, 139, 523, 1051, ...

A273814
12
5
2, 3, 31, 41, 53, 101, 421, 1259, 4721, 45259, ...

A128348
12
1
2, 3, 5, 19, 97, 109, 317, 353, 701, 9739, 14951, 37573, 46889, 769543, ...

A004064
12
−1
2*, 5, 11, 109, 193, 1483, 11353, 21419, 21911, 24071, 106859, 139739, ...

A057178
12
−5
2*, 3, 5, 13, 347, 977, 1091, 4861, 4967, 34679, ...

A128341
12
−7
2*, 3, 7, 67, 79, 167, 953, 1493, 3389, 4871, ...

12
−11
47, 401, 509, 8609, ...

A213216

*Note: if b < 0 and n is even, then the numbers n are not included in the corresponding OEIS sequence.


A conjecture related to the generalized Mersenne primes:[100][101] (the conjecture predicts where is the next generalized Mersenne prime, if the conjecture is true, then there are infinitely many primes for all such (a,b) pairs)


For any integers a and b which satisfy the conditions:




  1. a > 1, a < b < a.


  2. a and b are coprime. (thus, b cannot be 0)

  3. For every natural number r > 1, a and b are not both perfect rth powers. (since when a and b are both perfect rth powers, it can be shown that there are at most two n value such that anbn/ab is prime, and these n values are r itself or a root of r, or 2)


  4. −4ab is not a perfect fourth power (if so, then the number has aurifeuillean factorization).


has prime numbers of the form


Rp(a,b)=ap−bpa−b{displaystyle R_{p}(a,b)={frac {a^{p}-b^{p}}{a-b}}}R_{p}(a,b)={frac {a^{p}-b^{p}}{a-b}}

for prime p, the prime numbers will be distributed near the best fit line


Y=G⋅loga⁡(loga⁡(R(a,b)(n)))+C{displaystyle Y=Gcdot log _{a}(log _{a}(R_{(a,b)}(n)))+C}{displaystyle Y=Gcdot log _{a}(log _{a}(R_{(a,b)}(n)))+C}

where


limn→G=1eγ=0.561459483566…{displaystyle lim _{nrightarrow infty }G={frac {1}{e^{gamma }}}=0.561459483566ldots }{displaystyle lim _{nrightarrow infty }G={frac {1}{e^{gamma }}}=0.561459483566ldots }

and there are about


(loge⁡(N)+m⋅loge⁡(2)⋅loge⁡(loge⁡(N))+1N−δ)⋅loge⁡(a){displaystyle (log _{e}(N)+mcdot log _{e}(2)cdot log _{e}left(log _{e}(N))+{frac {1}{sqrt {N}}}-delta right)cdot {frac {e^{gamma }}{log _{e}(a)}}}{displaystyle (log _{e}(N)+mcdot log _{e}(2)cdot log _{e}left(log _{e}(N))+{frac {1}{sqrt {N}}}-delta right)cdot {frac {e^{gamma }}{log _{e}(a)}}}

prime numbers of this form less than N.




  • e is the base of the natural logarithm.


  • γ is the Euler–Mascheroni constant.


  • loga is the logarithm in base a.


  • R(a,b)(n) is the nth prime number of the form apbp/ab for prime p.


  • C is a data fit constant which varies with a and b.


  • δ is a data fit constant which varies with a and b.


  • m is the largest natural number such that a and b are both 2m − 1th powers.


We also have the following three properties:



  1. The number of prime numbers of the form apbp/ab (with prime p) less than or equal to n is about eγ loga(loga(n)).

  2. The expected number of prime numbers of the form apbp/ab with prime p between n and an is about eγ.

  3. The probability that number of the form apbp/ab is prime (for prime p) is about eγ/p loge(a).


If this conjecture is true, then for all such (a,b) pairs, let q be the nth prime of the form apbp/ab, the graph of loga(loga(q)) versus n is almost linear. (See [100])


When a = b + 1, it is (b + 1)nbn, a difference of two consecutive perfect nth powers, and if anbn is prime, then a must be b + 1, because it is divisible by ab.


Least n such that (b + 1)nbn is prime are


2, 2, 2, 3, 2, 2, 7, 2, 2, 3, 2, 17, 3, 2, 2, 5, 3, 2, 5, 2, 2, 229, 2, 3, 3, 2, 3, 3, 2, 2, 5, 3, 2, 3, 2, 2, 3, 3, 2, 7, 2, 3, 37, 2, 3, 5, 58543, 2, 3, 2, 2, 3, 2, 2, 3, 2, 5, 3, 4663, 54517, 17, 3, 2, 5, 2, 3, 3, 2, 2, 47, 61, 19, ... (sequence A058013 in the OEIS)

Least b such that (b + 1)prime(n)bprime(n) is prime are


1, 1, 1, 1, 5, 1, 1, 1, 5, 2, 1, 39, 6, 4, 12, 2, 2, 1, 6, 17, 46, 7, 5, 1, 25, 2, 41, 1, 12, 7, 1, 7, 327, 7, 8, 44, 26, 12, 75, 14, 51, 110, 4, 14, 49, 286, 15, 4, 39, 22, 109, 367, 22, 67, 27, 95, 80, 149, 2, 142, 3, 11, ... (sequence A222119 in the OEIS)


See also




  • Repunit

  • Fermat prime

  • Power of two

  • Erdős–Borwein constant

  • Mersenne conjectures

  • Mersenne twister

  • Double Mersenne number


  • Prime95 / MPrime


  • Great Internet Mersenne Prime Search (GIMPS)

  • Largest known prime number

  • Titanic prime

  • Gigantic prime

  • Megaprime

  • Wieferich prime

  • Wagstaff prime

  • Cullen prime

  • Woodall prime

  • Proth prime

  • Solinas prime

  • Gillies' conjecture




References





  1. ^ Regius, Hudalricus (1536). Utrisque Arithmetices Epitome..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  2. ^ abc "GIMPS Project Discovers Largest Known Prime Number: 282,589,933-1". Mersenne Research, Inc. 21 December 2018. Retrieved 21 December 2018.


  3. ^ Chris K. Caldwell, Mersenne Primes: History, Theorems and Lists


  4. ^ The Prime Pages, Mersenne's conjecture.


  5. ^ Cole, F. N. (1903), "On the factoring of large numbers", Bull. Amer. Math. Soc., 10 (3): 134–137, doi:10.1090/S0002-9904-1903-01079-9, JFM 34.0216.04


  6. ^ Bell, E.T. and Mathematical Association of America (1951). Mathematics, queen and servant of science. McGraw-Hill New York. p. 228.


  7. ^ "h2g2: Mersenne Numbers". BBC News. Archived from the original on December 5, 2014.


  8. ^ Horace S. Uhler (1952). "A Brief History of the Investigations on Mersenne Numbers and the Latest Immense Primes". Scripta Mathematica. 18: 122–131.


  9. ^ Brian Napper, The Mathematics Department and the Mark 1.


  10. ^ The Prime Pages, The Prime Glossary: megaprime.


  11. ^ Maugh II, Thomas H. (2008-09-27). "UCLA mathematicians discover a 13-million-digit prime number". Los Angeles Times. Retrieved 2011-05-21.


  12. ^ Tia Ghose. "Largest Prime Number Discovered". Scientific American. Retrieved 2013-02-07.


  13. ^ ab Cooper, Curtis (7 January 2016). "Mersenne Prime Number discovery – 274207281 − 1 is Prime!". Mersenne Research, Inc. Retrieved 22 January 2016.


  14. ^ Brook, Robert (January 19, 2016). "Prime number with 22 million digits is the biggest ever found". New Scientist. Retrieved 19 January 2016.


  15. ^ Chang, Kenneth (21 January 2016). "New Biggest Prime Number = 2 to the 74 Mil ... Uh, It's Big". The New York Times. Retrieved 22 January 2016.


  16. ^ "Milestones".


  17. ^ "Mersenne Prime Discovery - 2^77232917-1 is Prime!". www.mersenne.org. Retrieved 2018-01-03.


  18. ^ "GIMPS Discovers Largest Known Prime Number: 2^82,589,933-1". Retrieved 2019-01-01.


  19. ^ Will Edgington's Mersenne Page Archived 2014-10-14 at the Wayback Machine


  20. ^ Caldwell, Chris K. "Proof of a result of Euler and Lagrange on Mersenne Divisors". Prime Pages.


  21. ^ ab There is no mentioning among the ancient Egyptians of prime numbers, and they did not have any concept for prime numbers known today. In the Rhind papyrus (1650 BC) the Egyptian fraction expansions have fairly different forms for primes and composites, so it may be argued that they knew about prime numbers. "The Egyptians used ($) in the table above for the first primes r = 3, 5, 7, or 11 (also for r = 23). Here is another intriguing observation: That the Egyptians stopped the use of ($) at 11 suggests they understood (at least some parts of) Eratosthenes's Sieve 2000 years before Eratosthenes 'discovered' it." The Rhind 2/n Table [Retrieved 2012-11-11].

    In the school of Pythagoras (b. about 570 – d. about 495 BC) and the Pythagoreans, we find the first sure observations of prime numbers. Hence the first two Mersenne primes, 3 and 7, were known to and may even be said to have been discovered by them. There is no reference, though, to their special form 22 − 1 and 23 − 1 as such.

    The sources to the knowledge of prime numbers among the Pythagoreans are late. The Neoplatonic philosopher Iamblichus, AD c. 245–c. 325, states that the Greek Platonic philosopher Speusippus, c. 408 – 339/8 BC, wrote a book named On Pythagorean Numbers. According to Iamblichus this book was based on the works of the Pythagorean Philolaus, c. 470–c. 385 BC, who lived a century after Pythagoras, 570 – c. 495 BC. In his Theology of Arithmetic in the chapter On the Decad, Iamblichus writes: "Speusippus, the son of Plato's sister Potone, and head of the Academy before Xenocrates, compiled a polished little book from the Pythagorean writings which were particularly valued at any time, and especially from the writings of Philolaus; he entitled the book On Pythagorean Numbers. In the first half of the book, he elegantly expounds linear numbers [that is, prime numbers], polygonal numbers and all sorts of plane numbers, solid numbers and the five figures which are assigned to the elements of the universe, discussing both their individual attributes and their shared features, and their proportionality and reciprocity." Iamblichus The Theology of Arithmetic translated by Robin Waterfiled, 1988, p. 112f. [Retrieved 2012-11-11].

    Iamblichus also gives us a direct quote from Speusippus' book where Speusippus among other things writes: "Secondly, it is necessary for a perfect number [the concept "perfect number" is not used here in a modern sense] to contain an equal amount of prime and incomposite numbers, and secondary and composite numbers." Iamblichus The Theology of Arithmetic translated by Robin Waterfiled, 1988, p. 113. [Retrieved 2012-11-11]. For the Greek original text, see Speusippus of Athens: A Critical Study with a Collection of the Related Texts and Commentary by Leonardo Tarán, 1981, p. 140 line 21–22 [Retrieved 2012-11-11]

    In his comments to Nicomachus of Gerasas's Introduction to Arithmetic, Iamblichus also mentions that Thymaridas, ca. 400 BC – ca. 350 BC, uses the term rectilinear for prime numbers, and that Theon of Smyrna, fl. AD 100, uses euthymetric and linear as alternative terms. Nicomachus of Gerasa, Introduction to Arithmetic, 1926, p. 127 [Retrieved 2012-11-11] It is unclear though when this said Thymaridas lived. "In a highly suspect passage in Iamblichus, Thymaridas is listed as a pupil of Pythagoras himself." Pythagoreanism [Retrieved 2012-11-11]

    Before Philolaus, c. 470–c. 385 BC, we have no proof of any knowledge of prime numbers.



  22. ^ ab "Euclid's Elements, Book IX, Proposition 36".


  23. ^ The Prime Pages, Mersenne Primes: History, Theorems and Lists.


  24. ^ We find the oldest (undisputed) note of the result in Codex nr. 14908, which origins from Bibliotheca monasterii ord. S. Benedicti ad S. Emmeramum Ratisbonensis now in the archive of the Bayerische Staatsbibliothek, see "Halm, Karl / Laubmann, Georg von / Meyer, Wilhelm: Catalogus codicum latinorum Bibliothecae Regiae Monacensis, Bd.: 2,2, Monachii, 1876, p. 250". [retrieved on 2012-09-17] The Codex nr. 14908 consists of 10 different medieval works on mathematics and related subjects. The authors of most of these writings are known. Some authors consider the monk Fridericus Gerhart (Amman), 1400–1465 (Frater Fridericus Gerhart monachus ordinis sancti Benedicti astrologus professus in monasterio sancti Emmerani diocesis Ratisponensis et in ciuitate eiusdem) to be the author of the part where the prime number 8191 is mentioned. Geschichte Der Mathematik [retrieved on 2012-09-17] The second manuscript of Codex nr. 14908 has the name "Regulae et exempla arithmetica, algebraica, geometrica" and the 5th perfect number and all is factors, including 8191, are mentioned on folio no. 34 a tergo (backside of p. 34). Parts of the manuscript have been published in Archiv der Mathematik und Physik, 13 (1895), pp. 388–406 [retrieved on 2012-09-23]


  25. ^ "A i lettori. Nel trattato de' numeri perfetti, che giàfino dell anno 1588 composi, oltrache se era passato auáti à trouarne molti auertite molte cose, se era anco amplamente dilatatala Tauola de' numeri composti , di ciascuno de' quali si vedeano per ordine li componenti, onde preposto unnum." p. 1 in Trattato de' nvumeri perfetti Di Pietro Antonio Cataldo 1603. http://fermi.imss.fi.it/rd/bdv?/bdviewer@selid=1373775#


  26. ^ pp. 13–18 in Trattato de' nvumeri perfetti Di Pietro Antonio Cataldo 1603. http://fermi.imss.fi.it/rd/bdv?/bdviewer@selid=1373775#


  27. ^ pp. 18–22 in Trattato de' nvumeri perfetti Di Pietro Antonio Cataldo 1603. http://fermi.imss.fi.it/rd/bdv?/bdviewer@selid=1373775#


  28. ^ http://bibliothek.bbaw.de/bbaw/bibliothek-digital/digitalequellen/schriften/anzeige/index_html?band=03-nouv/1772&seite:int=36 Nouveaux Mémoires de l'Académie Royale des Sciences et Belles-Lettres 1772, pp. 35–36 EULER, Leonhard: Extrait d'une lettre à M. Bernoulli, concernant le Mémoire imprimé parmi ceux de 1771. p. 318 [intitulé: Recherches sur les diviseurs de quelques nombres très grands compris dans la somme de la progression géométrique 1 + 101 + 102 + 103 + ... + 10T = S]. Retrieved 2011-10-02.


  29. ^ http://primes.utm.edu/notes/by_year.html#31 The date and year of discovery is unsure. Dates between 1752 and 1772 are possible.


  30. ^ Chris K. Caldwell. "Modular restrictions on Mersenne divisors". Primes.utm.edu. Retrieved 2011-05-21.


  31. ^ “En novembre de l’année 1883, dans la correspondance de notre Académie se trouve une communication qui contient l’assertion que le nombre

    261 − 1 = 2305843009213693951

    est un nombre premier. /…/ Le tome XLVIII des Mémoires Russes de l’Académie /…/ contient le compte-rendu de la séance du 20 décembre 1883, dans lequel l’objet de la communication du père Pervouchine est indiqué avec précision.” Bulletin de l'Académie Impériale des Sciences de St.-Pétersbourg, s. 3, v. 31, 1887, cols. 532–533. https://www.biodiversitylibrary.org/item/107789#page/277/mode/1up [retrieved 2012-09-17]

    See also Mélanges mathématiques et astronomiques tirés du Bulletin de l’Académie impériale des sciences de St.-Pétersbourg v. 6 (1881–1888), pp. 553–554.

    See also Mémoires de l'Académie impériale des sciences de St.-Pétersbourg: Sciences mathématiques, physiques et naturelles, vol. 48



  32. ^ Powers, R. E. (1 January 1911). "The Tenth Perfect Number". The American Mathematical Monthly. 18 (11): 195–197. doi:10.2307/2972574. JSTOR 2972574.


  33. ^ "M. E. Fauquenbergue a trouvé ses résultats depuis Février, et j’en ai reçu communication le 7 Juin; M. Powers a envoyé le 1er Juin un cablógramme à M. Bromwich [secretary of London Mathematical Society] pour M107. Sur ma demande, ces deux auteurs m’ont adressé leurs remarquables résultats, et je m’empresse de les publier dans nos colonnes, avec nos felicitations." p. 103, André Gérardin, Nombres de Mersenne pp. 85, 103–108 in Sphinx-Œdipe. [Journal mensuel de la curiosité, de concours & de mathématiques.] v. 9, No. 1, 1914.


  34. ^ "Power's cable announcing this same result was sent to the London Math. So. on 1 June 1914." Mersenne's Numbers, Scripta Mathematica, v. 3, 1935, pp. 112–119 http://primes.utm.edu/mersenne/LukeMirror/lit/lit_008s.htm [retrieved 2012-10-13]


  35. ^ http://plms.oxfordjournals.org/content/s2-13/1/1.1.full.pdf Proceedings / London Mathematical Society (1914) s2–13 (1): 1. Result presented at a meeting with London Mathematical Society on June 11, 1914. Retrieved 2011-10-02.


  36. ^ The Prime Pages, M107: Fauquembergue or Powers?.


  37. ^ http://visualiseur.bnf.fr/CadresFenetre?O=NUMM-3039&I=166&M=chemindefer Presented at a meeting with Académie des sciences (France) on January 10, 1876. Retrieved 2011-10-02.


  38. ^ ab "Using the standard Lucas test for Mersenne primes as programmed by R. M. Robinson, the SWAC has discovered the primes 2521 − 1 and 2607 − 1 on January 30, 1952." D. H. Lehmer, Recent Discoveries of Large Primes, Mathematics of Computation, vol. 6, No. 37 (1952), p. 61, http://www.ams.org/journals/mcom/1952-06-037/S0025-5718-52-99404-0/S0025-5718-52-99404-0.pdf [Retrieved 2012-09-18]


  39. ^ "The program described in Note 131 (c) has produced the 15th Mersenne prime 21279 − 1 on June 25. The SWAC tests this number in 13 minutes and 25 seconds." D. H. Lehmer, A New Mersenne Prime, Mathematics of Computation, vol. 6, No. 39 (1952), p. 205, http://www.ams.org/journals/mcom/1952-06-039/S0025-5718-52-99387-3/S0025-5718-52-99387-3.pdf [Retrieved 2012-09-18]


  40. ^ ab "Two more Mersenne primes, 22203 − 1 and 22281 − 1, were discovered by the SWAC on October 7 and 9, 1952." D. H. Lehmer, Two New Mersenne Primes, Mathematics of Computation, vol. 7, No. 41 (1952), p. 72, http://www.ams.org/journals/mcom/1953-07-041/S0025-5718-53-99371-5/S0025-5718-53-99371-5.pdf [Retrieved 2012-09-18]


  41. ^ "On September 8, 1957, the Swedish electronic computer BESK established that the Mersenne number M3217 = 23217 − 1 is a prime." Hans Riesel, A New Mersenne Prime, Mathematics of Computation, vol. 12 (1958), p. 60, http://www.ams.org/journals/mcom/1958-12-061/S0025-5718-1958-0099752-6/S0025-5718-1958-0099752-6.pdf [Retrieved 2012-09-18]


  42. ^ ab A. Hurwitz and J. L. Selfridge, Fermat numbers and perfect numbers, Notices of the American Mathematical Society, v. 8, 1961, p. 601, abstract 587-104.


  43. ^ ab "If p is prime, Mp = 2p − 1 is called a Mersenne number. The primes M4253 and M4423 were discovered by coding the Lucas-Lehmer test for the IBM 7090." Alexander Hurwitz, New Mersenne Primes, Mathematics of Computation, vol. 16, No. 78 (1962), pp. 249–251, http://www.ams.org/journals/mcom/1962-16-078/S0025-5718-1962-0146162-X/S0025-5718-1962-0146162-X.pdf [Retrieved 2012-09-18]


  44. ^ abc "The primes M9689, M9941, and M11213 which are now the largest known primes, were discovered by Illiac II at the Digital Computer Laboratory of the University of Illinois." Donald B. Gillies, Three New Mersenne Primes and a Statistical Theory, Mathematics of Computation, vol. 18, No. 85 (1964), pp. 93–97, http://www.ams.org/journals/mcom/1964-18-085/S0025-5718-1964-0159774-6/S0025-5718-1964-0159774-6.pdf [Retrieved 2012-09-18]


  45. ^ "On the evening of March 4, 1971, a zero Lucas-Lehmer residue for p = p24 = 19937 was found. Hence, M19937 is the 24th Mersenne prime." Bryant Tuckerman, The 24th Mersenne Prime, Proceedings of the National Academy of Sciences of the United States of America, vol. 68:10 (1971), pp. 2319–2320, http://www.pnas.org/content/68/10/2319.full.pdf [Retrieved 2012-09-18]


  46. ^ "On October 30, 1978 at 9:40 pm, we found M21701 to be prime. The CPU time required for this test was 7:40:20. Tuckerman and Lehmer later provided confirmation of this result." Curt Noll and Laura Nickel, The 25th and 26th Mersenne Primes, Mathematics of Computation, vol. 35, No. 152 (1980), pp. 1387–1390, http://www.ams.org/journals/mcom/1980-35-152/S0025-5718-1980-0583517-4/S0025-5718-1980-0583517-4.pdf [Retrieved 2012-09-18]


  47. ^ "Of the 125 remaining Mp only M23209 was found to be prime. The test was completed on February 9, 1979 at 4:06 after 8:39:37 of CPU time. Lehmer and McGrogan later confirmed the result." Curt Noll and Laura Nickel, The 25th and 26th Mersenne Primes, Mathematics of Computation, vol. 35, No. 152 (1980), pp. 1387–1390, http://www.ams.org/journals/mcom/1980-35-152/S0025-5718-1980-0583517-4/S0025-5718-1980-0583517-4.pdf [Retrieved 2012-09-18]


  48. ^ David Slowinski, "Searching for the 27th Mersenne Prime", Journal of Recreational Mathematics, v. 11(4), 1978–79, pp. 258–261, MR 80g #10013


  49. ^ "The 27th Mersenne prime. It has 13395 digits and equals 244497 – 1. [...] Its primeness was determined on April 8, 1979 using the Lucas–Lehmer test. The test was programmed on a CRAY-1 computer by David Slowinski & Harry Nelson." (p. 15) "The result was that after applying the Lucas–Lehmer test to about a thousand numbers, the code determined, on Sunday, April 8th, that 244497 − 1 is, in fact, the 27th Mersenne prime." (p. 17), David Slowinski, "Searching for the 27th Mersenne Prime", Cray Channels, vol. 4, no. 1, (1982), pp. 15–17.


  50. ^ "An FFT containing 8192 complex elements, which was the minimum size required to test M110503, ran approximately 11 minutes on the SX-2. The discovery of M110503 (January 29, 1988) has been confirmed." W. N. Colquitt and L. Welsh, Jr., A New Mersenne Prime, Mathematics of Computation, vol. 56, No. 194 (April 1991), pp. 867–870, http://www.ams.org/journals/mcom/1991-56-194/S0025-5718-1991-1068823-9/S0025-5718-1991-1068823-9.pdf [Retrieved 2012-09-18]


  51. ^ "This week, two computer experts found the 31st Mersenne prime. But to their surprise, the newly discovered prime number falls between two previously known Mersenne primes. It occurs when p = 110,503, making it the third-largest Mersenne prime known." I. Peterson, Priming for a lucky strike Science News; 2/6/88, Vol. 133 Issue 6, pp. 85–85. http://ehis.ebscohost.com/ehost/detail?vid=3&hid=23&sid=9a9d7493-ffed-410b-9b59-b86c63a93bc4%40sessionmgr10&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ%3d%3d#db=afh&AN=8824187 [Retrieved 2012-09-18]


  52. ^ "Mersenne Prime Numbers". Omes.uni-bielefeld.de. 2011-01-05. Retrieved 2011-05-21.


  53. ^ "Slowinski, a software engineer for Cray Research Inc. in Chippewa Falls, discovered the number at 11:36 a.m. Monday. [that is, 1983 September 19]" Jim Higgins, "Elusive numeral's number is up" and "Scientist finds big number" in The Milwaukee Sentinel – Sep 24, 1983, p. 1, p. 11 [retrieved 2012-10-23]


  54. ^ "The number is the 30th known example of a Mersenne prime, a number divisible only by 1 and itself and written in the form 2p − 1, where the exponent p is also a prime number. For instance, 127 is a Mersenne number for which the exponent is 7. The record prime number's exponent is 216,091." I. Peterson, Prime time for supercomputers Science News; 9/28/85, Vol. 128 Issue 13, p. 199. http://ehis.ebscohost.com/ehost/detail?vid=4&hid=22&sid=c11090a2-4670-469f-8f75-947b593a56a0%40sessionmgr10&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ%3d%3d#db=afh&AN=8840537 [Retrieved 2012-09-18]


  55. ^ "Slowinski's program also found the 28th in 1982, the 29th in 1983, and the 30th [known at that time] this past Labor Day weekend. [that is, August 31-September 1, 1985]" Rad Sallee, "`Supercomputer'/Chevron calculating device finds a bigger prime number" Houston Chronicle, Friday 09/20/1985, Section 1, Page 26, 4 Star Edition [retrieved 2012-10-23]


  56. ^ The Prime Pages, The finding of the 32nd Mersenne.


  57. ^ Chris Caldwell, The Largest Known Primes.


  58. ^ Crays press release


  59. ^ "Slowinskis email".


  60. ^ Silicon Graphics' press release https://web.archive.org/web/19970606011821/http://www.sgi.com/Headlines/1996/September/prime.html [Retrieved 2012-09-20]


  61. ^ The Prime Pages, A Prime of Record Size! 21257787 – 1.


  62. ^ GIMPS Discovers 35th Mersenne Prime.


  63. ^ GIMPS Discovers 36th Known Mersenne Prime.


  64. ^ GIMPS Discovers 37th Known Mersenne Prime.


  65. ^ GIMPS Finds First Million-Digit Prime, Stakes Claim to $50,000 EFF Award.


  66. ^ GIMPS, Researchers Discover Largest Multi-Million-Digit Prime Using Entropia Distributed Computing Grid.


  67. ^ GIMPS, Mersenne Project Discovers Largest Known Prime Number on World-Wide Volunteer Computer Grid.


  68. ^ GIMPS, Mersenne.org Project Discovers New Largest Known Prime Number, 224,036,583 – 1.


  69. ^ GIMPS, Mersenne.org Project Discovers New Largest Known Prime Number, 225,964,951 – 1.


  70. ^ GIMPS, Mersenne.org Project Discovers New Largest Known Prime Number, 230,402,457 – 1.


  71. ^ GIMPS, Mersenne.org Project Discovers Largest Known Prime Number, 232,582,657 – 1.


  72. ^ ab Titanic Primes Raced to Win $100,000 Research Award. Retrieved on 2008-09-16.


  73. ^ "On April 12th [2009], the 47th known Mersenne prime, 242,643,801 – 1, a 12,837,064 digit number was found by Odd Magnar Strindmo from Melhus, Norway! This prime is the second largest known prime number, a "mere" 141,125 digits smaller than the Mersenne prime found last August.", The List of Largest Known Primes Home Page, http://primes.utm.edu/primes/page.php?id=88847 [retrieved 2012-09-18]


  74. ^ "GIMPS Discovers 48th Mersenne Prime, 257,885,161 − 1 is now the Largest Known Prime". Great Internet Mersenne Prime Search. Retrieved 2016-01-19.


  75. ^ "List of known Mersenne prime numbers". Retrieved 29 November 2014.


  76. ^ "GIMPS Project Discovers Largest Known Prime Number: 277,232,917-1". Mersenne Research, Inc. 3 January 2018. Retrieved 3 January 2018.


  77. ^ "List of known Mersenne prime numbers". Retrieved 3 January 2018.


  78. ^ GIMPS Milestones Report. Retrieved 2018-01-27


  79. ^ The largest known prime has been a Mersenne prime since 1952, except between 1989 and 1992; see Caldwell, "The Largest Known Prime by Year: A Brief History" from the Prime Pages website, University of Tennessee at Martin.


  80. ^ Thorsten Kleinjung, Joppe Bos, Arjen Lenstra "Mersenne Factorization Factory" http://eprint.iacr.org/2014/653.pdf


  81. ^ Henri Lifchitz and Renaud Lifchitz. "PRP Top Records". Retrieved 2018-03-21.


  82. ^ "Exponent Status for M1277". Retrieved 2018-06-22.


  83. ^ Petković, Miodrag (2009). Famous Puzzles of Great Mathematicians. AMS Bookstore. p. 197. ISBN 978-0-8218-4814-2.


  84. ^ Alan Chamberlin. "JPL Small-Body Database Browser". Ssd.jpl.nasa.gov. Retrieved 2011-05-21.


  85. ^ "OEIS A016131". The On-Line Encyclopedia of Integer Sequences.


  86. ^ Tayfun Pay, and James L. Cox. "An overview of some semantic and syntactic complexity classes".


  87. ^ "A research of Mersenne and Fermat primes". Archived from the original on 2012-05-29.


  88. ^ Solinas, Jerome A. (1 January 2011). "Generalized Mersenne Prime". In Tilborg, Henk C. A. van; Jajodia, Sushil. Encyclopedia of Cryptography and Security. Springer US. pp. 509–510. doi:10.1007/978-1-4419-5906-5_32. ISBN 978-1-4419-5905-8.


  89. ^ Chris Caldwell: The Prime Glossary: Gaussian Mersenne (part of the Prime Pages)


  90. ^ Ali Zalnezhad, Hossein Zalnezhad, Ghasem Shabani, Mehdi Zalnezhad "Relationships and Algorithm in order to Achieve the Largest Primes" https://arxiv.org/pdf/1503.07688.pdf


  91. ^ (x, 1) and (x, −1) for x = 2 to 50


  92. ^ (x, 1) for x = 2 to 160


  93. ^ (x, −1) for x = 2 to 160


  94. ^ (x + 1, x) for x = 1 to 160


  95. ^ (x + 1, −x) for x = 1 to 40


  96. ^ (x + 2, x) for odd x = 1 to 107


  97. ^ (x, −1) for x = 2 to 200


  98. ^ PRP records, search for (a^n-b^n)/c, that is, (a, b)


  99. ^ PRP records, search for (a^n+b^n)/c, that is, (a, −b)


  100. ^ ab Caldwell, Chris. "Heuristics: Deriving the Wagstaff Mersenne Conjecture".


  101. ^ "Generalized Repunit Conjecture".




External links











  • Hazewinkel, Michiel, ed. (2001) [1994], "Mersenne number", Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4

  • GIMPS home page


  • GIMPS status — status page gives various statistics on search progress, typically updated every week, including progress towards proving the ordering of primes 42–47

  • GIMPS, known factors of Mersenne numbers


  • Mq = (8x)2 − (3qy)2 Property of Mersenne numbers with prime exponent that are composite (PDF)


  • Mq = x2 + d·y2 math thesis (PS)


  • Grime, James. "31 and Mersenne Primes". Numberphile. Brady Haran.


  • Mersenne prime bibliography with hyperlinks to original publications


  • report about Mersenne primes — detection in detail (in German)

  • GIMPS wiki


  • Will Edgington's Mersenne Page — contains factors for small Mersenne numbers

  • Known factors of Mersenne numbers

  • Decimal digits and English names of Mersenne primes

  • Prime curios: 2305843009213693951

  • Factorization of Mersenne numbers Mn, with n odd, n up to 1199

  • Factorization of Mersenne numbers M2n, 2n up to 2398 (n up to 1199) or 2n is in the form 8k + 4 up to 4796 (n is on the form 4k + 2 up to 2398)


  • OEIS sequence A250197 (Numbers n such that the left Aurifeuillian primitive part of 2^n+1 is prime)—Factorization of Mersenne numbers Mn (n up to 1280)

  • Factorization of completely factored Mersenne numbers

  • The Cunningham project, factorization of bn ± 1, b = 2, 3, 5, 6, 7, 10, 11, 12

  • Factorization of bn ± 1, 2 ≤ b ≤ 12

  • Factorization of an ± bn, with coprime a, b, 2 ≤ b < a ≤ 12


  • MathWorld links



    • Weisstein, Eric W. "Mersenne number". MathWorld.

    • Weisstein, Eric W. "Mersenne prime". MathWorld.

    • 47th Mersenne Prime Found












    Popular posts from this blog

    Lambaréné

    Chris Pine

    Kashihara Line