標準軌由最先使用鐵路的英国提出。設計及建造斯托克顿-达灵顿铁路(英语:Stockton and Darlington Railway)的英国工程師喬治·史蒂芬生提出4呎8½吋的軌距,並成功說服火車製造商生產4呎8½吋軌距的機車及車輛。由於史蒂芬生成功設計的鐵路是眾人模仿的對象,亦使這軌距變得流行。[1]1845年英國皇家專員建議用4呎8½吋作為標準軌距。1846年英國國會通過法案,要求將來所有的鐵路都使用標準軌。除了英國的大西部鐵路(Great Western Railway)是使用寬軌之外,英國的主要鐵路都是標準軌。大西部鐵路亦於1892年改成標準軌。
^Science Museum Group. Sectioned conjectural model of 'Rocket' steam locomotive. 1909-3. Science Museum Group Collection Online. Accessed September 13, 2017. https://collection.sciencemuseum.org.uk/objects/co26970.
Pomeranz, Kenneth; Topik, Steven. The World that Trade Created: Society, Culture, and World Economy, 1400 to the Present. Armonk, New York: M.E. Sharpe. 1999. ISBN 0-7656-0250-4.
Puffert, Douglas J. Tracks across Continents, Paths through History: The Economic Dynamics of Standardization in Railway Gauge. University of Chicago Press. 2009. ISBN 978-0-226-68509-0.
外部連接
The Sydney Morning Herald. The Sydney Morning Herald. 23 May 1892: 4 [14 August 2011] –通过National Library of Australia., a discussion of gauge in Australia circa 1892
A learned text of standardisation of gauge
Standard Railway Gauge. Townsville Bulletin. 5 October 1937: 12 [19 March 2014] –通过National Library of Australia., a discussion of the Roman gauge origin theory.
Place in Moyen-Ogooué, Gabon Lambaréné Street in Lambaréné Lambaréné Location in Gabon Coordinates: 0°41′18″S 10°13′55″E / 0.68833°S 10.23194°E / -0.68833; 10.23194 Coordinates: 0°41′18″S 10°13′55″E / 0.68833°S 10.23194°E / -0.68833; 10.23194 Country Gabon Province Moyen-Ogooué Population (2013 census) • Total 38,775 Lambaréné is a town and the capital of Moyen-Ogooué in Gabon. With a population of 38,775 as of 2013, it is located 75 kilometres south of the equator. Lambaréné is based in the Central African Rainforest at the river Ogooué. This river divides the city into 3 districts: Rive Gauche, Ile Lambaréné and Rive Droite. The Albert Schweitzer Hospital and the districts Adouma and Abongo are located on Rive Droite. The districts Atongowanga, Sahoty, Dakar, Grand Village, Château, Lalala and Bordamur build the Ile Lambaréné. The majority of the people in Lambaréné live in the district Isaac located on Rive Gauche. This distr...
This article is about the number. For the year, see 800. For other uses, see 800 (disambiguation). Natural number ← 799 800 801 → List of numbers — Integers ← 0 100 200 300 400 500 600 700 800 900 → Cardinal eight hundred Ordinal 800th (eight hundredth) Factorization 2 5 × 5 2 Greek numeral Ω´ Roman numeral DCCC Binary 1100100000 2 Ternary 1002122 3 Quaternary 30200 4 Quinary 11200 5 Senary 3412 6 Octal 1440 8 Duodecimal 568 12 Hexadecimal 320 16 Vigesimal 200 20 Base 36 M8 36 800 ( eight hundred ) is the natural number following 799 and preceding 801. It is the sum of four consecutive primes (193 + 197 + 199 + 211). It is a Harshad number. Contents 1 Integers from 801 to 899 1.1 800s 1.2 810s 1.3 820s 1.4 830s 1.5 840s 1.6 850s 1.7 860s 1.8 870s 1.9 880s 1.10 890s 2 References Integers from 801 to 899 800s Main article: 801...
"J57" redirects here. For the music artist, see J57 (rapper). J57 / JT3C YJ57-P-3 cut-away demonstrator at USAF Museum Type Turbojet National origin United States Manufacturer Pratt & Whitney First run 1950 Major applications Boeing 707 Boeing B-52 Stratofortress Boeing KC-135 Stratotanker Douglas DC-8 North American F-100 Super Sabre Vought F-8 Crusader Number built 21,170 built Developed from Pratt & Whitney XT45 Variants JT3D/TF33 Developed into Pratt & Whitney J52/JT8A Pratt & Whitney J75/JT4A The Pratt & Whitney J57 (company designation: JT3C ) is an axial-flow turbojet engine developed by Pratt & Whitney in the early 1950s. The J57 (first run January 1950 [1] ) was the first 10,000 lbf (45 kN) thrust class engine in the United States. The J57/JT3C was developed into the J75/JT4A turbojet, JT3D/TF33 turbofan and the PT5/T57 turboprop. [2] Contents 1 Design an...